Skip to main content
Log in

Quark deconfinement in neutron star cores

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    Article  ADS  Google Scholar 

  2. M. Alford, S. Reddy, Phys. Rev. D 67, 074024 (2003).

    Article  ADS  Google Scholar 

  3. C.Q. Ma, C.Y. Gao, nucl-th/0612107.

  4. F. Özel, Nature 441, 1115 (2006).

    Article  ADS  Google Scholar 

  5. M. Alford, D. Blaschke, A. Drago, T. Klähn, G. Pagliara, J. Schaffner-Bielich, Nature 445, E7 (2007).

  6. J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  7. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Barrois, Nucl. Phys. B 129, 390 (1977)

    Article  ADS  Google Scholar 

  10. R. Rapp, T. Schäfer, E. Shuryak, M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998)

    Article  ADS  Google Scholar 

  11. D.H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004)

    Article  ADS  Google Scholar 

  12. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  13. S. Pal, M. Hanauske, I. Zakout, H. Stöcker, W. Greiner, Phys. Rev. C 60, 015802 (1999).

    Article  ADS  Google Scholar 

  14. H. Müller, B.K. Jennings, Nucl. Phys. A 626, 966 (1997)

    Article  ADS  Google Scholar 

  15. H. Müller, Phys. Rev. C 57, 1974 (1998).

    Article  ADS  Google Scholar 

  16. F. Neumann, M. Buballa, M. Oertel, Nucl. Phys. A 714, 481 (2003).

    Article  MATH  ADS  Google Scholar 

  17. M. Buballa, M. Oertel, Phys. Lett. B 457, 261 (1999)

    Article  ADS  Google Scholar 

  18. J.I. Kapusta, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, England, 1989).

  19. S.B. Rüster, V. Werth, M. Buballa, I.A. Shovkovy, D.H. Rischke, Phys. Rev. D 72, 034004 (2005).

    Article  ADS  Google Scholar 

  20. P. Rehberg, S.P. Klevansky, J. Hüfner, Phys. Rev. C 53, 410 (1996).

    Article  ADS  Google Scholar 

  21. W.M. Yao, J. Phys. G: Nucl. Part. Phys. 33, 1 (2006).

    Article  ADS  Google Scholar 

  22. S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 42, 403 (2005).

    Article  ADS  Google Scholar 

  23. Paweł Danielewicz, Roy Lacey, William G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  24. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  MATH  ADS  Google Scholar 

  25. J.M. Weisberg, J.H. Taylor, Radio Pulsars, edited by M. Bailes, D.J. Nice, S. Thorsett (Astronomical Society of the Pacific, San Francisco, 2003) p. 93-8

  26. S.M. Ransom, J.W.T. Hessels, I.H. Stairs, Science 307, 892 (2005).

    Article  ADS  Google Scholar 

  27. D.J. Nice, E.M. Splaver, I.H. Stairs, Astrophys. J. 634, 1242 (2005).

    Article  ADS  Google Scholar 

  28. K. Schertler, S. Leupold, J. Schaffner-Bielich, Phys. Rev. C 60, 025801 (1999).

    Article  ADS  Google Scholar 

  29. M. Baldo, G.F. Burgio, P. Castorina, S. Plumari, D. Zappalà, Phys. Rev. C 75, 035804 (2007).

    Article  ADS  Google Scholar 

  30. M. Buballa, F. Neumann, M. Oertel, I. Shovkovy, Phys. Lett. B 595, 36 (2004).

    Article  ADS  Google Scholar 

  31. S. Lawley, W. Bentzc, A.W. Thomas, Phys. Lett. B 632, 495 (2006)

    Article  ADS  Google Scholar 

  32. M. Baldo, M. Buballa, G.F. Burgio, Phys. Lett. B 562, 153 (2003).

    Article  ADS  Google Scholar 

  33. J. Cottam, F. Paerels, M. Mendez, Nature 420, 51 (2002).

    Article  ADS  Google Scholar 

  34. P. Chang, S. Morsink, L. Bildsten, I. Wasserman, Astrophys. J. 636, L117 (2006).

  35. S. Bhattacharyya, M.C. Miller, F.K. Lamb, Astrophys. J. 644, 1085 (2006).

    Article  ADS  Google Scholar 

  36. A. Tiengo, D.K. Galloway, T. di Salvo, Astron. Astrophys. 441, 283 (2005).

    Article  ADS  Google Scholar 

  37. B.D. Lackey, M. Nayyar, B.J. Owen, Phys. Rev. D 73, 024021 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

T. Bıró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, CQ., Gao, CY. Quark deconfinement in neutron star cores. Eur. Phys. J. A 34, 153–160 (2007). https://doi.org/10.1140/epja/i2007-10497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2007-10497-y

PACS.

Navigation