Skip to main content
Log in

Scalar and axial-vector mesons

  • QNP 2006
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Almost thirty years ago, Penny G. Estabrooks asked “Where and what are the scalar mesons?” (P. Estabrooks, Phys. Rev. D 19, 2678 (1979)). The first part of her question can now be confidently responded (E. van Beveren et al., Z. Phys. C 30, 615 (1986)). However, with respect to the “What” many puzzles remain unanswered. Scalar and axial-vector mesons form part of a large family of mesons. Consequently, though it is useful to pay them some extra attention, there is no point in discussing them as isolated phenomena. The particularity of structures in the scattering of --basically-- pions and kaons with zero angular momentum is the absence of the centrifugal barrier, which allows us to “see” strong interactions at short distances. Experimentally observed differences and similarities between scalar and axial-vector mesons on the one hand, and other mesons on the other hand, are very instructive for further studies. Nowadays, there exists an abundance of theoretical approaches towards the mesonic spectrum, ranging from confinement models of all kinds, i.e., glueballs, and quark-antiquark, multiquark and hybrid configurations, to models in which only mesonic degrees of freedom are taken into account. Nature seems to come out somewhere in the middle, neither preferring pure bound states, nor effective meson-meson physics with only coupling constants and possibly form factors. As a matter of fact, apart from a few exceptions, like pions and kaons, Nature does not allow us to study mesonic bound states of any kind, which is equivalent to saying that such states do not really exist. Hence, instead of extrapolating from pions and kaons to the remainder of the meson family, it is more democratic to consider pions and kaons mesonic resonances that happen to come out below the lowest threshold for strong decay. Nevertheless, confinement is an important ingredient for understanding the many regularities observed in mesonic spectra. Therefore, excluding quark degrees of freedom is also not the most obvious way of describing mesons in general, and scalars and axial-vectors in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. van Beveren, G. Rupp, at http://cft.fis.uc.pt/eef/ QNP06\_Beveren/qnp06talk/spectrum/ccbarho.htm.

  2. E. van Beveren, G. Rupp, at http://cft.fis.uc.pt/eef/ QNP06\_Beveren/qnp06talk/spectrum/ccbar.htm

  3. BELLE Collaboration (S.K. Choi), Phys. Rev. Lett. 89, 102001 (2002)

    Article  ADS  Google Scholar 

  4. BABAR Collaboration (B. Aubert), Phys. Rev. Lett. 97, 222001 (2006).

    Article  ADS  Google Scholar 

  5. E. van Beveren, C. Dullemond, G. Rupp, Phys. Rev. D 21, 772 (1980)

    Article  ADS  Google Scholar 

  6. C.J. Isham, A. Salam, J.A. Strathdee, Nature Phys. Sci. 244, 82 (1973)

    ADS  Google Scholar 

  7. E. van Beveren, T.A. Rijken, C. Dullemond, G. Rupp, Lect. Notes Phys. 211, 331 (1984).

    Article  ADS  Google Scholar 

  8. O. Oliveira, R.A. Coimbra, arXiv:hep-ph/0603046.

  9. K.J. Juge, A. O'Cais, M.B. Oktay, M.J. Peardon, S.M. Ryan, PoS (LAT2005) 029 (2006).

  10. N.A. Törnqvist, Ann. Phys. (N.Y.) 123, 1 (1979).

    Article  ADS  Google Scholar 

  11. E. Eichten, in Cargese 1975, Part A (Plenum Press, New York, 1976) pp. 305-328.

  12. E.E. Kolomeitsev, M.F.M. Lutz, AIP Conf. Proc. 717, 665 (2004).

    Article  ADS  Google Scholar 

  13. P. Geiger, E.S. Swanson, Phys. Rev. D 50, 6855 (1994).

    Article  ADS  Google Scholar 

  14. E. van Beveren, G. Rupp, T.A. Rijken, C. Dullemond, Phys. Rev. D 27, 1527 (1983).

    Article  ADS  Google Scholar 

  15. E.B. Gregory, PoS (LAT2005) 027 (2006).

  16. Particle Data Group Collaboration (S. Eidelman), Phys. Lett. B 592, 1 (2004).

    Article  ADS  Google Scholar 

  17. BELLE Collaboration (S.K. Choi), Phys. Rev. Lett. 91, 262001 (2003)

    Article  ADS  Google Scholar 

  18. G. Goldhaber, Phys. Rev. Lett. 37, 255 (1976)

    Article  ADS  Google Scholar 

  19. A. de Rújula, H. Georgi, S.L. Glashow, Phys. Rev. Lett. 37, 398 (1976).

    Article  ADS  Google Scholar 

  20. E.S. Swanson, Phys. Rep. 429, 243 (2006).

    Article  ADS  Google Scholar 

  21. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  22. Yu.S. Kalashnikova, Phys. Rev. D 72, 034010 (2005).

    Article  ADS  Google Scholar 

  23. C. Albertus, arXiv:hep-ph/0610062, these proceedings.

  24. N.A. Törnqvist, Z. Phys. C 68, 647 (1995).

    Article  ADS  Google Scholar 

  25. M. Harada, F. Sannino, J. Schechter, Phys. Rev. D 54, 1991 (1996).

    Article  ADS  Google Scholar 

  26. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004).

    Article  ADS  Google Scholar 

  27. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  28. E. van Beveren, G. Rupp, Phys. Rev. Lett. 91, 012003 (2003)

    Article  ADS  Google Scholar 

  29. BABAR Collaboration (B. Aubert), Phys. Rev. Lett. 90, 242001 (2003).

    Article  ADS  Google Scholar 

  30. S. Tosi, these proceedings.

  31. D.S. Hwang, D.-W. Kim, Phys. Lett. B 601, 137 (2004).

    Article  ADS  Google Scholar 

  32. Yu.A. Simonov, J.A. Tjon, Phys. Rev. D 70, 114013 (2004).

    Article  ADS  Google Scholar 

  33. T. Matsuki, T. Morii, Phys. Rev. D 56, 5646 (1997) (Aust. J. Phys. 50, 163 (1997)).

    Article  ADS  Google Scholar 

  34. T. Matsuki, T. Morii, K. Sudoh, arXiv:hep-ph/0605019.

  35. P. Bicudo, Nucl. Phys. A 748, 537 (2005).

    Article  ADS  Google Scholar 

  36. T. Mehen, R.P. Springer, Phys. Rev. D 72, 034006 (2005).

    Article  ADS  Google Scholar 

  37. M.A. Nowak, J. Wasiluk, Acta Phys. Pol. B 35, 3021 (2004).

    ADS  Google Scholar 

  38. P. Bicudo, Phys. Rev. D 74, 036008 (2006).

    Article  ADS  Google Scholar 

  39. A. Zhang, Phys. Rev. D 72, 017902 (2005).

    Article  ADS  Google Scholar 

  40. S. Okubo, Phys. Lett. 5, 165 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. E. van Beveren, G. Rupp, Int. J. Theor. Phys. Group Theor. Nonlin. Opt. 11, 179 (2006).

    Google Scholar 

  42. E. van Beveren, G. Rupp, Phys. Rev. Lett. 97, 202001 (2006).

    Article  ADS  Google Scholar 

  43. G. Rupp, arXiv:hep-ph/0610188, these proceedings.

  44. P. Colangelo, F. De Fazio, S. Nicotri, Phys. Lett. B 642, 48 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  45. E. van Beveren,, Z. Phys. C 30, 615 (1986).

    Article  ADS  Google Scholar 

  46. E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 582, 39 (2004).

    Article  ADS  Google Scholar 

  47. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, PoS (HEP2005) 105 (2006).

  48. H.Y. Cheng, W.S. Hou, Phys. Lett. B 566, 193 (2003).

    Article  ADS  Google Scholar 

  49. K. Terasaki, arXiv:hep-ph/0309119.

  50. K. Terasaki, arXiv:hep-ph/0609223, these proceedings.

  51. D. Bećirević, S. Fajfer, S. Prelovšek, Phys. Lett. B 599, 55 (2004).

    Article  ADS  Google Scholar 

  52. Particle Data Group (T.A. Lasinski), Rev. Mod. Phys. 45, S1 (1973).

  53. Particle Data Group (C. Bricman), Rev. Mod. Phys. 52, S1 (1980).

  54. F.E. Close, N.A. Törnqvist, J. Phys. G 28, R249 (2002).

  55. P. Roy, Phys. Rev. 168, 1708 (1968)

    Article  ADS  Google Scholar 

  56. J.L. Basdevant, B.W. Lee, Phys. Rev. D 2, 1680 (1970).

    Article  ADS  Google Scholar 

  57. D. Iagolnitzer, J. Zinn-Justin, J.B. Zuber, Nucl. Phys. B 60, 233 (1973).

    Article  ADS  Google Scholar 

  58. M.D. Scadron, Phys. Rev. D 26, 239 (1982).

    Article  ADS  Google Scholar 

  59. R. Delbourgo, M.D. Scadron, Phys. Rev. Lett. 48, 379 (1982).

    Article  ADS  Google Scholar 

  60. R.L. Jaffe, Phys. Rev. D 15, 267 (1977).

    Article  ADS  Google Scholar 

  61. E. van Beveren, G. Rupp, arXiv:hep-ph/0207022.

  62. J.L. Rosner, Phys. Rev. D 74, 076006 (2006).

    Article  ADS  Google Scholar 

  63. G. Janssen, B.C. Pearce, K. Holinde, J. Speth, Phys. Rev. D 52, 2690 (1995).

    Article  ADS  Google Scholar 

  64. N.A. Törnqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996).

    Article  ADS  Google Scholar 

  65. A.V. Anisovich, A.V. Sarantsev, Phys. Lett. B 413, 137 (1997).

    Article  ADS  Google Scholar 

  66. P. Minkowski, W. Ochs, Eur. Phys. J. C 9, 283 (1999).

    ADS  Google Scholar 

  67. S.N. Cherry, M.R. Pennington, Nucl. Phys. A 688, 823 (2001).

    Article  ADS  Google Scholar 

  68. M. Boglione, M.R. Pennington, Phys. Rev. D 65, 114010 (2002).

    Article  ADS  Google Scholar 

  69. S. Ishida, M. Ishida, Taku Ishida, Kunio Takamatsu, Tsuneaki Tsuru, Prog. Theor. Phys. 98, 621 (1997)

    Article  ADS  Google Scholar 

  70. D. Black, A.H. Fariborz, F. Sannino, J. Schechter, Phys. Rev. D 59, 074026 (1999)

    Article  ADS  Google Scholar 

  71. M.K. Volkov, V.L. Yudichev, Eur. Phys. J. C 10, 223 (2001).

    ADS  Google Scholar 

  72. Y.B. Dai, Y.L. Wu, Eur. Phys. J. C 39, S1 (2005).

  73. H.Q. Zheng, Z.Y. Zhou, G.Y. Qin, Z.G. Xiao, J.J. Wang, N. Wu, Nucl. Phys. A 733, 235 (2004).

    Article  ADS  Google Scholar 

  74. SCALAR Collaboration (T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi, H. Wada), Nucl. Phys. Proc. Suppl. 129, 242 (2004).

    Article  ADS  Google Scholar 

  75. Y. Oh, H. Kim, Phys. Rev. C 74, 015208 (2006).

    Article  ADS  Google Scholar 

  76. E791 Collaboration (E.M. Aitala), Phys. Rev. Lett. 89, 121801 (2002).

    Article  ADS  Google Scholar 

  77. A. Reis, these proceedings.

  78. J.A. Oller, Phys. Rev. D 71, 054030 (2005).

    Article  ADS  Google Scholar 

  79. P. Estabrooks, R.K. Carnegie, A.D. Martin, W.M. Dunwoodie, T.A. Lasinski, D.W. Leith, Nucl. Phys. B 133, 490 (1978)

    Article  ADS  Google Scholar 

  80. E791 Collaboration (E.M. Aitala), Phys. Rev. Lett. 86, 770 (2001).

    Article  ADS  Google Scholar 

  81. J.A. Oller, E. Oset, J.R. Peláez, Phys. Rev. D 59, 074001 (1999)

    Article  ADS  Google Scholar 

  82. BES Collaboration (M. Ablikim), Phys. Lett. B 633, 681 (2006).

    Article  ADS  Google Scholar 

  83. D.V. Bugg, Phys. Lett. B 632, 471 (2006).

    Article  ADS  Google Scholar 

  84. P. Costa, M.C. Ruivo, C.A. de Sousa, Yu.L. Kalinovsky, Phys. Rev. D 71, 116002 (2005).

    Article  ADS  Google Scholar 

  85. A.A. Osipov, B. Hiller, J. da Providência, Phys. Lett. B 634, 48 (2006).

    Article  ADS  Google Scholar 

  86. A.A. Osipov, B. Hiller, A.H. Blin, J. da Providência, to be published in Ann. Phys. (N.Y.) doi:10.1016/j.aop. 2006.08.004, arXiv:hep-ph/0607066.

  87. E. van Beveren, J.E.G. Costa, F. Kleefeld, G. Rupp, Phys. Rev. D 74, 037501 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. van Beveren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beveren, E., Rupp, G. Scalar and axial-vector mesons. Eur. Phys. J. A 31, 468–473 (2007). https://doi.org/10.1140/epja/i2006-10186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10186-5

PACS.

Navigation