Skip to main content
Log in

Systematics of deformed states around doubly-magic 40Ca

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The low-lying rotational bands of A = 36-48 nuclei are consistently explained by starting from the recently discovered, superdeformed intrinsic state of 36Ar as the core, filling successively the first three Nilsson orbits above the Fermi border. The critical single-particle energies were obtained from experimental data as were the residual interactions in the parametrization of Brink and Kerman. Implicit are the rearrangement energies due to configuration-dependent equilibrium deformations. The binding energies of 20 experimental bandheads were used to derive the parameters while another 38 bandheads were subsequently predicted and identified almost completely. The Racavy expression reduced by 20% reproduces or predicts the values of the deformation parameter ɛ. The empirical Nilsson model amended by γ-vibrational and rotation-aligned bands accounts completely for the multi-particle excitations from the N = 2 into the N = 3 major shell which are not accessible by shell-model calculations. In the case of 40Ca a spectrum of 42 states below Ex = 8MeV is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Endt, Nucl. Phys. A 521, 1 (1990)

    Article  Google Scholar 

  2. A.M. Bernstein, Ann. Phys. (N.Y.) 69, 19 (1972).

    Article  MATH  Google Scholar 

  3. B.H. Wildenthal, in Progress in Particle and Nuclear Physics, edited by D.H. Wilkinson (Plenum Press, New York, 1984).

  4. E.K. Warburton, J.A. Becker, D.J. Millener, B.A. Brown, Brookhaven National Laboratory Report, 40890 (1987) unpublished.

  5. E. Caurier, A.P. Zucker, A. Poves, G. Martinez-Pinedo, Phys. Rev. C 50, 225 (1994).

    Article  Google Scholar 

  6. G. Martinez-Pinedo, A.P. Zucker, A. Poves, E. Caurier, Phys. Rev. C 55, 187 (1997).

    Article  Google Scholar 

  7. A. Poves, J. Sanchez-Solano, Phys. Rev. C 58, 179 (1998).

    Article  Google Scholar 

  8. S.M. Lenzi, Phys. Rev. C 60, 021303 (R) (1999).

    Article  Google Scholar 

  9. W.J. Gerace, A.M. Green, Nucl. Phys. A 93, 110 (1967).

    Article  Google Scholar 

  10. W.J. Gerace, A.M. Greene, Nucl. Phys. A 123, 241 (1969).

    Article  Google Scholar 

  11. B.H. Flowers, L.D. Skouras, Nucl. Phys. A 136, 353 (1969).

    Article  Google Scholar 

  12. L.D. Skouras, Nucl. Phys. A 220, 604 (1974).

    Article  Google Scholar 

  13. I.P. Johnstone, Nucl. Phys. A 110, 429 (1968).

    Article  Google Scholar 

  14. I.P. Johnstone, G.L. Payne, Nucl. Phys. A 124, 217 (1969).

    Article  Google Scholar 

  15. D.M. Brink, A.K. Kerman, Nucl. Phys. 12, 314 (1959).

    Article  Google Scholar 

  16. C.E. Svensson, Phys. Rev. C 63, 061301-1 (2001).

    Article  Google Scholar 

  17. P. Betz, E. Bitterwolf, B. Busshardt, H. Röpke, Z. Phys. A 276, 295 (1976).

    Google Scholar 

  18. E. Bitterwolf, Z. Phys. A 313, 123 (1983).

    Google Scholar 

  19. E. Ideguchi, Phys. Rev. Lett. 87, 222501-1 (2001).

    Article  Google Scholar 

  20. G. Rakavy, Nucl. Phys. 4, 375 (1957).

    Article  Google Scholar 

  21. S.G. Nilsson, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 29, no. 16 (1955).

  22. H. Röpke, Nucl. Phys. A 674, 95 (2000).

    Article  Google Scholar 

  23. M. Carchichi, B.H. Wildenthal, Phys. Rev. C 37, 1681 (1988).

    Article  Google Scholar 

  24. P.J. Nolan, J. Phys. G 1, 35 (1975).

    Article  Google Scholar 

  25. H. Hasper, Phys. Rev. C 19, 1482 (1979).

    Article  Google Scholar 

  26. B.A. Brown, B.H. Wildenthal, At. Data Nucl. Data Tables 33, 347 (1985).

    Article  Google Scholar 

  27. J.J. Kolata, J.W. Olness, E.K. Warburton, A.R. Poletti, Phys. Rev. C 13, 1944 (1976).

    Article  Google Scholar 

  28. W.W. Simpson, W.R. Dixon, R.S. Storey, Phys. Rev. Lett. 31, 946 (1973).

    Article  Google Scholar 

  29. C.D. O’Leary, Phys. Rev. C 61, 064314 (2000).

    Article  Google Scholar 

  30. F. Brandolini, Nucl. Phys. A 642, 387 (1998).

    Article  Google Scholar 

  31. P. Betz, H. Röpke, F. Glatz, G. Hammel, V. Glattes, W. Brendler, Z. Phys. 271, 195 (1974).

    Google Scholar 

  32. D. Rudolph, Phys. Rev. C 65, 034305-1 (2002).

    Article  Google Scholar 

  33. H.T. Fortune, R.R. Betts, J.N. Bishop, M.N.I. Al-Jadir, R. Middleton, Nucl. Phys. A 294, 208 (1976).

    Article  Google Scholar 

  34. H. Röpke, J. Brenneisen, M. Lickert, Eur. Phys. J. A 14, 159 (2002).

    Google Scholar 

  35. F. Brandolini, Phys. Rev. C 64, 044307 (2001).

    Article  Google Scholar 

  36. Th. Andersson, Eur. Phys. J. A 6, 5 (1999).

    MATH  Google Scholar 

  37. N. Zeldes, A. Grill, A. Simieric, Mat.-Fys. Skr. Dan. Vidensk. Selsk. 3, no. 5 (1967).

  38. C.J. Chiara, Phys. Rev. C 67, 041303 (R) (2003).

    Article  Google Scholar 

  39. C.J. Lister, A.M. Al-Naser, A.H. Behbehani, L.L. Green, P.J. Nolan, J.F. Sharpey-Schafer, J. Phys. G 6, 619 (1980).

    Article  Google Scholar 

  40. I. Lack, Eur. Phys. J. A 16, 309 (2003).

    Google Scholar 

  41. A.H. Behbehani, A.M. Al-Naser, C.J. Lister, P.J. Nolan, J.F. Sharpey-Schafer, Phys. Lett. B 74, 219 (1978).

    Article  Google Scholar 

  42. A.H. Behbehani, J. Phys. G 5, 1117 (1979).

    Article  Google Scholar 

  43. P. Bednarczyk, Eur. Phys. J. A 2, 157 (1998).

    Article  Google Scholar 

  44. J. Styczen, J. Chevallier, B. Haas, N. Schulz, P. Taras, M. Toulemonde, Nucl. Phys. A 262, 317 (1976).

    Article  Google Scholar 

  45. P.M. Endt, At. Data Nucl. Data Tables 55, 171 (1993)

    Article  Google Scholar 

  46. T.W. Burrows, Nucl. Data Sheets 74, 1 (1995).

    Article  Google Scholar 

  47. G.D. Dracoulis, J.L. Durell, W. Gelletly, J. Phys. A 6, 1772 (1973).

    Google Scholar 

  48. A.H. Wapstra, G. Audi, R. Hockstra, At. Data Tables 39, 281 (1988).

    Google Scholar 

  49. C.L. Finck, J.P. Schiffer, Nucl. Phys. A 225, 93 (1974).

    Article  Google Scholar 

  50. N. Schulz, W.P. Alford, A. Jamshidi, Nucl. Phys. A 162, 349 (1971).

    Article  Google Scholar 

  51. W.P. Alford, R.A. Lindgren, D. Elmore, R.N. Boyd, Phys. Lett. B 46, 356 (1973).

    Article  Google Scholar 

  52. Kamal K. Seth, A. Saha, W. Benenson, W.A. Lanford, H. Nann, B.H. Wildenthal, Phys. Rev. Lett. 33, 233 (1974).

    Article  Google Scholar 

  53. C.W. Towsley, D. Cline, R.N. Horoshkov, Nucl. Phys. A 204, 574 (1973).

    Article  Google Scholar 

  54. W.J. Gerace, A.M. Green, Nucl. Phys. A 113, 641 (1968).

    Article  Google Scholar 

  55. C.R. Gruhn, T.Y.T. Kuo, C.J. Maggiore, H. McMann, F. Petrovich, B.M. Preedom, Phys. Rev. C 6, 915 (1972).

    Article  Google Scholar 

  56. S.W. Kikstra, C. van der Leun, P.M. Endt, J.G.L. Booten, A.G.M. van Hees, A.A. Wolters, Nucl. Phys. A 512, 425 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

D. Schwalm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röpke, H. Systematics of deformed states around doubly-magic 40Ca. Eur. Phys. J. A 22, 213–230 (2004). https://doi.org/10.1140/epja/i2004-10045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10045-5

Keywords

Navigation