Skip to main content
Log in

Revisiting the global electroweak fit of the Standard Model and beyond with Gfitter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2011

Abstract

The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing for flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plug-ins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges.

This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model (SM), and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed.

In the SM fit including the direct Higgs searches, we find M H =116.4 +18.3−1.3 GeV, and the 2σ and 3σ allowed regions [114,145] GeV and [[113,168] and [180,225]] GeV, respectively. For the strong coupling strength at fourth perturbative order we obtain α S (M 2 Z )=0.1193 +0.0028−0.0027 (exp )±0.0001 (theo). Finally, for the mass of the top quark, excluding the direct measurements, we find m t =178.2 +9.8−4.2 GeV. In the 2HDM we exclude a charged-Higgs mass below 240 GeV at 95% confidence level. This limit increases towards larger tan β, e.g., \(M_{H^{\pm}}<780\ \mbox{GeV}\) is excluded for tan β=70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alexander (LEP Collaborations: ALEPH, DELPHI, L3 and OPAL), Phys. Lett. B 276, 247 (1992)

    Google Scholar 

  2. S. Abachi (D0 Collaboration), Phys. Rev. Lett. 74, 2632 (1995). hep-ex/9503003

    ADS  Google Scholar 

  3. F. Abe (CDF Collaboration), Phys. Rev. Lett. 74, 2626 (1995). hep-ex/9503002

    ADS  Google Scholar 

  4. LEP Electroweak Working Group, in 27th International Conference on High-Energy Physics, ICHEP 94, Glasgow, Scotland, UK, 20–27 July 1994, CERN-PPE-94-187

  5. A.B. Arbuzov , Comput. Phys. Commun. 174, 728 (2006). hep-ph/0507146

    ADS  Google Scholar 

  6. D.Y. Bardin , Comput. Phys. Commun. 133, 229 (2001). hep-ph/9908433

    MATH  ADS  Google Scholar 

  7. G. Montagna, O. Nicrosini, F. Piccinini, G. Passarino, Comput. Phys. Commun. 117, 278 (1999). hep-ph/9804211

    ADS  Google Scholar 

  8. J. Erler, Phys. Rev. D 63, 071301 (2001). hep-ph/0010153

    ADS  Google Scholar 

  9. http://cern.ch/Gfitter

  10. R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)

    ADS  Google Scholar 

  11. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). hep-ph/0311148

    ADS  Google Scholar 

  12. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004). hep-ph/0407317

    ADS  Google Scholar 

  13. M. Awramik, M. Czakon, A. Freitas, J. High Energy Phys. 11, 048 (2006). hep-ph/0608099

    ADS  Google Scholar 

  14. R. Boughezal, J.B. Tausk, J.J. van der Bij, Nucl. Phys. B 713, 278 (2005). hep-ph/0410216

    MATH  ADS  Google Scholar 

  15. R. Boughezal, J.B. Tausk, J.J. van der Bij, Nucl. Phys. B 725, 3 (2005). hep-ph/0504092

    MATH  ADS  Google Scholar 

  16. D.Y. Bardin et al. (Electroweak working group), hep-ph/9709229, Prepared for Workshop Group on Precision Calculations for the Z Resonance (2nd meeting held March 31, 3rd meeting held June 13), Geneva, Switzerland, 14 January 1994, CERN-YELLOW-95-03A

  17. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, arXiv:0801.1821, SFB-CPP-08-04, TTP08-01

  18. M. Davier, S. Descotes-Genon, A. Hoecker, B. Malaescu, Z. Zhang, arXiv:0803.0979, CERN-OPEN-2008-006

  19. ATLAS Collaboration, Physics TDR, vol. II, CERN-LHCC-99-15, 1999

  20. CMS Collaboration, Physics TDR, vol. II, CERN-LHCC-06-21, 2006

  21. A. Djouadi et al., arXiv:0709.1893

  22. J. Charles (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). hep-ph/0406184

    ADS  Google Scholar 

  23. A. Hoecker, H. Lacker, S. Laplace, F. Le Diberder, Eur. Phys. J. C 21, 225 (2001). hep-ph/0104062

    ADS  Google Scholar 

  24. J. Charles, in School of Statistics, SOS 2008, Strasbourg, France, June 30–July 4 2008

  25. L. Demortier, CDF-MEMO-STATISTICS-PUBLIC-8662, June 2007

  26. S.S. Wilks, Ann. Math. Stat. 9, 60 (1938)

    MATH  Google Scholar 

  27. J. Neyman, Philos. Trans. R. Soc. Lond. Ser. A 226, 333 (1937). Reprinted in A Selection of Early Statistical Papers on J. Neyman, U. of California Press, Berkeley, 1967

    ADS  Google Scholar 

  28. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). physics/9711021

    ADS  Google Scholar 

  29. J. Conrad, O. Botner, A. Hallgren, C. Perez de los Heros, Phys. Rev. D 67, 012002 (2003). hep-ex/0202013

    ADS  Google Scholar 

  30. G. Punzi, physics/0511202

  31. R.L. Berger, D.D. Boos, J. Am. Stat. Assoc. 89, 1012 (1994)

    MATH  MathSciNet  Google Scholar 

  32. M.J. Silvapulle, J. Am. Stat. Assoc. 91, 1690 (1996). Erratum: 92, 801 (1997)

    MATH  MathSciNet  Google Scholar 

  33. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    ADS  Google Scholar 

  34. N. Reid, Prepared for PHYSTAT 2003: Statistical Problems in Particle Physics, Astrophysics, and Cosmology, Menlo Park, CA, 8–11 September 2003, PHYSTAT-2003-THAT001

  35. W.A. Rolke, A.M. Lopez, J. Conrad, Nucl. Instrum. Methods A 551, 493 (2005). physics/0403059

    ADS  Google Scholar 

  36. K. Cranmer, physics/0511028

  37. The Gfitter code is available at the CERN CVS repository. Contact the authors for a copy

  38. A. Hoecker et al., physics/0703039, CERN-OPEN-2007-007

  39. LEP Electroweak Working Group (LEP EWWG), Status of March 2008. http://lepewwg.web.cern.ch/LEPEWWG/

  40. M. Goodman’s, Neutrino-Oscillation-Industry web page. http://neutrinooscillation.org/

  41. M. Bona (UTfit Collaboration), J. High Energy Phys. 07, 028 (2005). hep-ph/0501199

    ADS  Google Scholar 

  42. NASA’s Lambda archive. http://lambda.gsfc.nasa.gov/

  43. R. Lafaye, T. Plehn, D. Zerwas, hep-ph/0404282, Contribution to LHC-LC Study Group, G. Weiglein et al., CERN-TH-2003-313

  44. P. Bechtle, K. Desch, P. Wienemann, Comput. Phys. Commun. 174, 47 (2006). hep-ph/0412012

    ADS  Google Scholar 

  45. D.Y. Bardin, G. Passarino (Clarendon, Oxford, 1999)

  46. The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Working Groups, Phys. Rep. 427, 257 (2006). hep-ex/0509008

    ADS  Google Scholar 

  47. J. Erler, P. Langacker, Phys. Lett. B 667, 1 (2008). Review article in Particle Data Group, Review of Particle Physics 2008

    ADS  Google Scholar 

  48. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

    ADS  Google Scholar 

  49. A. Sirlin, Phys. Rev. D 22, 971 (1980)

    ADS  Google Scholar 

  50. K.I. Aoki, Z. Hioki, M. Konuma, R. Kawabe, T. Muta, Prog. Theor. Phys. Suppl. 73, 1 (1982)

    ADS  Google Scholar 

  51. K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhofer, C. Sturm, Phys. Rev. Lett. 97, 102003 (2006). hep-ph/0605201

    ADS  Google Scholar 

  52. Y. Schroder, M. Steinhauser, Phys. Lett. B 622, 124 (2005). hep-ph/0504055

    ADS  Google Scholar 

  53. R. Boughezal, M. Czakon, Nucl. Phys. B 755, 221 (2006). hep-ph/0606232

    MATH  ADS  Google Scholar 

  54. M. Awramik, M. Czakon, A. Freitas, B.A. Kniehl, 0811.1364

  55. A. Czarnecki, J.H. Kühn, Phys. Rev. Lett. 77, 3955 (1996). hep-ph/9608366

    ADS  Google Scholar 

  56. R. Harlander, T. Seidensticker, M. Steinhauser, Phys. Lett. B 426, 125 (1998). hep-ph/9712228

    ADS  Google Scholar 

  57. D.Y. Bardin, S. Riemann, T. Riemann, Z. Phys. C 32, 121 (1986)

    ADS  Google Scholar 

  58. B.A. Kniehl, F. Madricardo, M. Steinhauser, Phys. Rev. D 62, 073010 (2000). hep-ph/0005060

    ADS  Google Scholar 

  59. M. Goebel, Diploma thesis, University Hamburg, 2008

  60. P. Skands, D. Wicke, Eur. Phys. J. C 52, 133 (2007). hep-ph/0703081

    ADS  Google Scholar 

  61. D. Wicke, P.Z. Skands, 0807.3248

  62. A.H. Hoang, A. Jain, I. Scimemi, I.W. Stewart, 0803.4214

  63. A.H. Hoang, I.W. Stewart, 0808.0222

  64. C. Amsler (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    ADS  Google Scholar 

  65. Tevatron Electroweak Working Group, and others, 0808.1089, FERMILAB-TM-2413-E

  66. K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Lett. B 649, 173 (2007). hep-ph/0611102

    ADS  Google Scholar 

  67. A. Hoecker, W. Marciano, Phys. Lett. B 667, 1 (2008). Review article in Particle Data Group, Review of Particle Physics 2008

    ADS  Google Scholar 

  68. J. Alcaraz et al. (ALEPH Collaboration), hep-ex/0612034

  69. CDF, and others, 0808.0147, FERMILAB-TM-2415

  70. V.M. Abazov (CDF Collaboration), Phys. Rev. D 70, 092008 (2004). hep-ex/0311039

    ADS  Google Scholar 

  71. R. Barate (The ALEPH, DELPHI, L3 and OPAL Collaborations, and LEP Working Group for Higgs Boson Searches), Phys. Lett. B 565, 61 (2003). hep-ex/0306033

    ADS  Google Scholar 

  72. The TEVNPH Working Group for the CDF and D0 Collaborations, 0804.3423, FERMILAB-PUB-08-069-E

  73. G. Bernardi et al. (Tevatron New Phenomena Higgs Working Group), 0808.0534, FERMILAB-PUB-08-270-E

  74. T. Read, in 1st Workshop on Confidence Limits, CERN, Geneva, Switzerland, 17–18 January 2000, CERN-2000-005

  75. T. Junk, Nucl. Instrum. Methods A 434, 435 (1999). hep-ex/9902006

    ADS  Google Scholar 

  76. A.L. Read, J. Phys. G 28, 2693 (2002)

    ADS  MathSciNet  Google Scholar 

  77. C.S. Wood , Science 275, 1759 (1997)

    Google Scholar 

  78. J. Guena, M. Lintz, M.A. Bouchiat, physics/0412017

  79. N.H. Edwards, S.J. Phipp, P.E.G. Baird, S. Nakayama, Phys. Rev. Lett. 74, 2654 (1995)

    ADS  Google Scholar 

  80. P.A. Vetter, D.M. Meekhof, P.K. Majumder, S.K. Lamoreaux, E.N. Fortson, Phys. Rev. Lett. 74, 2658 (1995)

    ADS  Google Scholar 

  81. P.L. Anthony (SLAC E158), Phys. Rev. Lett. 95, 081601 (2005). hep-ex/0504049

    ADS  Google Scholar 

  82. G.P. Zeller (NuTeV Collaboration), Phys. Rev. Lett. 88, 091802 (2002). hep-ex/0110059

    ADS  Google Scholar 

  83. K.J. Eskola, H. Paukkunen, J. High Energy Phys. 06, 008 (2006). hep-ph/0603155

    ADS  Google Scholar 

  84. S. Davidson, S. Forte, P. Gambino, N. Rius, A. Strumia, J. High Energy Phys. 02, 037 (2002). hep-ph/0112302

    ADS  Google Scholar 

  85. K.S. McFarland, S.-O. Moch, in Proceedings of Mini-Workshop on Electroweak Precision Data and the Higgs Mass, Zeuthen, Germany, 28 February–1 March, 2003. hep-ph/0306052

  86. M. Beneke, M. Jamin, 0806.3156

  87. K. Maltman, T. Yavin, 0807.0650

  88. M. Davier, A. Hoecker, Phys. Lett. B 435, 427 (1998). hep-ph/9805470

    ADS  Google Scholar 

  89. H. Burkhardt, B. Pietrzyk, Phys. Rev. D 72, 057501 (2005). hep-ph/0506323

    ADS  Google Scholar 

  90. G. Abbiendi (OPAL Collaboration), Eur. Phys. J. C 45, 1 (2006). hep-ex/0505072

    ADS  Google Scholar 

  91. M. Acciarri (L3 Collaboration), Phys. Lett. B 476, 40 (2000). hep-ex/0002035

    ADS  Google Scholar 

  92. P. Achard (L3 Collaboration), Phys. Lett. B 623, 26 (2005). hep-ex/0507078

    ADS  Google Scholar 

  93. G. Abbiendi (OPAL Collaboration), Eur. Phys. J. C 33, 173 (2004). hep-ex/0309053

    ADS  Google Scholar 

  94. J. Alcaraz et al. (The ALEPH, DELPHI, L3, OPAL Collaborations, and the LEP Electroweak Working Group), 0712.0929, CERN-PH-EP-2007-039

  95. S. Haywood et al., in CERN Workshop on Standard Model Physics (and more) at the LHC (Final Plenary Meeting), Geneva, Switzerland, 14–15 October 1999, CERN-TH-2000-102. hep-ph/0003275

  96. I. Borjanovic , Eur. Phys. J. C 39(2), 63 (2005). hep-ex/0403021

    ADS  Google Scholar 

  97. V. Buge , J. Phys. G 34, N193 (2007)

    Google Scholar 

  98. N. Besson, M. Boonekamp, E. Klinkby, T. Petersen, S. Mehlhase, 0805.2093

  99. A.H. Hoang , Eur. Phys. J. Direct C 2, 1 (2000). hep-ph/0001286

    ADS  Google Scholar 

  100. K.G. Chetyrkin, M. Steinhauser, Nucl. Phys. B 573, 617 (2000). hep-ph/9911434

    ADS  Google Scholar 

  101. R. Hawkings, K. Mönig, Eur. Phys. J. Direct C 1, 8 (1999). hep-ex/9910022

    Google Scholar 

  102. M. Winter, LC-PHSM-2001-016

  103. F. Jegerlehner, in 2nd ECFA/DESY Study 1998-2001, 1851, DESY-01-029. hep-ph/0105283

  104. H.E. Haber, G.L. Kane, T. Sterling, Nucl. Phys. B 161, 493 (1979)

    ADS  Google Scholar 

  105. H.E. Haber, D. O’Neil, Phys. Rev. D 74, 015018 (2006). hep-ph/0602242

    ADS  Google Scholar 

  106. S. Davidson, H.E. Haber, Phys. Rev. D 72, 035004 (2005). hep-ph/0504050

    ADS  Google Scholar 

  107. J.M. Cline, P.-A. Lemieux, Phys. Rev. D 55, 3873 (1997). hep-ph/9609240

    ADS  Google Scholar 

  108. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs Hunter’s Guide (Perseus, Cambridge, 1990). SCIPP-89/13, UCD-89-4, BNL-41644

    Google Scholar 

  109. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, hep-ph/9302272

  110. L.F. Abbott, P. Sikivie, M.B. Wise, Phys. Rev. D 21, 1393 (1980)

    ADS  Google Scholar 

  111. LEP Higgs Working Group for Higgs boson searches, hep-ex/0107031

  112. L. Michel, Proc. Phys. Soc. A 63, 514 (1950)

    ADS  Google Scholar 

  113. W. Fletschwe, H.-J. Gerber, Phys. Lett. B 667, 1 (2008). Review article in Particle Data Group, Review of Particle Physics 2008

    ADS  Google Scholar 

  114. A. Stahl, Phys. Lett. B 667, 1 (2008). Review article in Particle Data Group, Review of Particle Physics 2008

    ADS  Google Scholar 

  115. H.E. Haber, H.E. Logan, Phys. Rev. D 62, 015011 (2000). hep-ph/9909335

    ADS  Google Scholar 

  116. M. Misiak , Phys. Rev. Lett. 98, 022002 (2007). hep-ph/0609232

    ADS  Google Scholar 

  117. E. Barberio et al. (Heavy Flavor Averaging Group), 0808.1297

  118. P. Gambino, M. Misiak, Nucl. Phys. B 611, 338 (2001). hep-ph/0104034

    ADS  Google Scholar 

  119. P. Gambino, M. Misiak, private communication

  120. A. Gray (HPQCD). Phys. Rev. Lett. 95, 212001 (2005). hep-lat/0507015

    ADS  Google Scholar 

  121. J. Charles et al. (CKMfitter Group), Updated results for ICHEP 2008 conference available at http://ckmfitter.in2p3.fr

  122. W.-S. Hou, Phys. Rev. D 48, 2342 (1993)

    ADS  Google Scholar 

  123. B. Aubert (BABAR Collaboration), Phys. Rev. D 77, 011107 (2008). 0708.2260

    ADS  Google Scholar 

  124. B. Aubert (BABAR Collaboration), Phys. Rev. D 76, 052002 (2007). 0705.1820

    ADS  Google Scholar 

  125. P. Chang, Rare decays and new physics, in 34th International Conference on High Energy Physics (ICHEP 2008), Philadelphia, USA, 29 Jully–5 August 2008

  126. M. Mazur, B decays with tau leptons in the final state, in 10th International Workshop on Tau Lepton Physics (Tau 2008), Novosibirsk, Russia, 22–25 September 2008

  127. B. Aubert et al. (BABAR Collaboration), 0807.4187

  128. M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), 0801.1817, FERMILAB-PUB-08-101-T

  129. E. Blucher, W. Marciano, Phys. Lett. B 667, 1 (2008). Review article in Particle Data Group, Review of Particle Physics 2008

    ADS  Google Scholar 

  130. J.F. Kamenik, F. Mescia, Phys. Rev. D 78, 014003 (2008). 0802.3790

    ADS  Google Scholar 

  131. B. Aubert (BABAR Collaboration), Phys. Rev. Lett. 100, 021801 (2008). 0709.1698

    ADS  Google Scholar 

  132. A.G. Akeroyd et al. (SuperKEKB Physics Working Group), hep-ex/0406071

  133. S. Hashimoto et al. (eds.), KEK-REPORT-2004-4

  134. Super KEKB Project, Super KEKB Home Page http://superb.kek.jp/

  135. M. Bona et al., 0709.0451

  136. M. Flechl, 0710.1761, and references therein

  137. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    ADS  MathSciNet  Google Scholar 

  138. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    ADS  MathSciNet  Google Scholar 

  139. J.R. Ellis, G.L. Fogli, E. Lisi, Phys. Lett. B 343, 282 (1995)

    ADS  Google Scholar 

  140. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008). 0801.0028

    ADS  Google Scholar 

  141. M. Steinhauser, Phys. Lett. B 429, 158 (1998). hep-ph/9803313

    ADS  Google Scholar 

  142. D. Nomura, T. Teubner, Private communication, 2007

  143. J.H. Kühn, M. Steinhauser, Phys. Lett. B 437, 425 (1998). hep-ph/9802241

    ADS  Google Scholar 

  144. K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Phys. Lett. B 371, 93 (1996). hep-ph/9511430

    ADS  Google Scholar 

  145. K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Nucl. Phys. B 482, 213 (1996). hep-ph/9606230

    ADS  Google Scholar 

  146. K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Nucl. Phys. B 505, 40 (1997). hep-ph/9705254

    ADS  Google Scholar 

  147. G. t’Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)

    ADS  MathSciNet  Google Scholar 

  148. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys. Rev. D 18, 3998 (1978)

    ADS  Google Scholar 

  149. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B 400, 379 (1997). hep-ph/9701390

    ADS  Google Scholar 

  150. M. Czakon, Nucl. Phys. B 710, 485 (2005). hep-ph/0411261

    MATH  ADS  Google Scholar 

  151. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997). hep-ph/9706430

    ADS  Google Scholar 

  152. G.M. Prosperi, M. Raciti, C. Simolo, Prog. Part. Nucl. Phys. 58, 387 (2007)

    ADS  Google Scholar 

  153. W. Bernreuther, W. Wetzel, Nucl. Phys. B 197, 228 (1982). Erratum: Nucl. Phys. B 513, 758 (1998)

    ADS  Google Scholar 

  154. W. Wetzel, Nucl. Phys. B 196, 259 (1982)

    ADS  Google Scholar 

  155. G. Rodrigo, A. Pich, A. Santamaria, Phys. Lett. B 424, 367 (1998). hep-ph/9707474

    ADS  Google Scholar 

  156. J.A.M. Vermaseren, S.A. Larin, T. van Ritbergen, Phys. Lett. B 405, 327 (1997). hep-ph/9703284

    ADS  Google Scholar 

  157. G. Degrassi, S. Fanchiotti, F. Feruglio, B.P. Gambino, A. Vicini, Phys. Lett. B 350, 75 (1995). hep-ph/9412380

    ADS  Google Scholar 

  158. G. Degrassi, F. Feruglio, A. Vicini, S. Fanchiotti, P. Gambino, hep-ph/9507286

  159. G. Degrassi, P. Gambino, A. Vicini, Phys. Lett. B 383, 219 (1996). hep-ph/9603374

    ADS  Google Scholar 

  160. G. Degrassi, P. Gambino, Nucl. Phys. B 567, 3 (2000). hep-ph/9905472

    Google Scholar 

  161. B.A. Kniehl, Nucl. Phys. B 347, 86 (1990)

    ADS  Google Scholar 

  162. D.A. Ross, M.J.G. Veltman, Nucl. Phys. B 95, 135 (1975)

    ADS  Google Scholar 

  163. M.J.G. Veltman, Nucl. Phys. B 123, 89 (1977)

    ADS  Google Scholar 

  164. A.A. Akhundov, D.Y. Bardin, T. Riemann, Nucl. Phys. B 276, 1 (1986)

    ADS  Google Scholar 

  165. D.Y. Bardin , Z. Phys. C 44, 493 (1989)

    Google Scholar 

  166. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Nucl. Phys. B 409, 105 (1993)

    ADS  Google Scholar 

  167. J. Fleischer, O.V. Tarasov, F. Jegerlehner, Phys. Lett. B 319, 249 (1993)

    ADS  Google Scholar 

  168. D.Y. Bardin, P.K. Khristova, O.M. Fedorenko, Nucl. Phys. B 197, 1 (1982)

    ADS  Google Scholar 

  169. D.Y. Bardin, P.K. Khristova, O.M. Fedorenko, Nucl. Phys. B 175, 435 (1980)

    ADS  Google Scholar 

  170. K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, Phys. Lett. B 85, 277 (1979)

    ADS  Google Scholar 

  171. M. Dine, J.R. Sapirstein, Phys. Rev. Lett. 43, 668 (1979)

    ADS  Google Scholar 

  172. W. Celmaster, R.J. Gonsalves, Phys. Rev. Lett. 44, 560 (1980)

    ADS  Google Scholar 

  173. S.G. Gorishnii, A.L. Kataev, S.A. Larin, Phys. Lett. B 273, 141 (1991)

    ADS  Google Scholar 

  174. K.G. Chetyrkin, J.H. Kühn, A. Kwiatkowski, hep-ph/9503396

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A. Hoecker.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1140/epjc/s10052-011-1718-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The Gfitter Group., Flächer, H., Goebel, M. et al. Revisiting the global electroweak fit of the Standard Model and beyond with Gfitter. Eur. Phys. J. C 60, 543–583 (2009). https://doi.org/10.1140/epjc/s10052-009-0966-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0966-6

Keywords

Navigation