Skip to main content
Log in

Extended Hubbard model with the renormalized Wannier wave functions in the correlated state II: quantum critical scaling of the wave function near the Mott-Hubbard transition

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We present a model example of a quantum critical behavior of the renormalized single-particle Wannier function composed of Slater s-orbitals and represented in an adjustable Gaussian STO-7G basis, which is calculated for cubic lattices in the Gutzwiller correlated state near the metal-insulator transition (MIT). The discussion is carried out within the extended Hubbard model and using the method of approach proposed earlier [Eur. Phys. J. B 66, 385 (2008)]. The component atomic-wave-function size, the Wannier function maximum, as well as the system energy, all scale with the increasing lattice parameter R as [ (R-Rc)/Rc] s with s in the interval [0.9, 1.0]. Such scaling law is interpreted as the evidence of a dominant role of the interparticle Coulomb repulsion, which for R > Rc is of intersite character. Relation of the insulator-metal transition critical value of the lattice-parameter R = Rc to the original Mott criterion is also obtained. The method feasibility is tested by comparing our results with the exact approach for the Hubbard chain, for which the Mott-Hubbard transition is absent. In view of unique features of our results, an extensive discussion in qualitative terms is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1990)

    Google Scholar 

  2. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  3. F. Gebhardt, The Mott Metal-Insulator Transition (Springer Vg., Berlin, 1997)

    Google Scholar 

  4. For cold atomic gasses see: M. Greiner, O. Mandel, T. Esslinger, T.W. Häsch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  5. F. Gerbier, Phys. Rev. Lett. 99, 120405 (2007)

    Article  ADS  Google Scholar 

  6. The situation in hadronic matter is recently reviewed in: P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009)

    Article  ADS  Google Scholar 

  7. J. Hubbard, Proc. Roy. Soc. (London) A 281, 401 (1964)

    Article  ADS  Google Scholar 

  8. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  9. For recent review see e.g.: G. Kotliar, D. Vollhardt, Phys. Today 53 (2004)

  10. J. Spałek, A. Datta, J.M. Honig, Phys. Rev. Lett. 49, 728 (1987)

    Google Scholar 

  11. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Spałek, in Encyclopedia of Condensed Matter Physics, edited by F. Bassani et al. (Elsevier, Amsterdam, 2005), Vol. 3, pp. 126–36

    Google Scholar 

  13. For a didactical review see: J. Spałek, Eur. J. Phys. 21, 511 (2000)

    Article  Google Scholar 

  14. P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Metcalf, J.M. Honig, Science 302, 89 (2003)

    Article  ADS  Google Scholar 

  15. In the case of quasi-two-dimensional system see: F. Kagawa, K. Miyagawa, K. Kanoda, Nature 436, 534 (2005)

    Article  ADS  Google Scholar 

  16. E.g. the case of NiS2-xSex, for review see: J.M. Honig, J. Spałek, Chem. Mater. 10, 2910 (1998)

    Article  Google Scholar 

  17. On theoretical side, see e.g. P. Korbel et al., Eur. Phys. J. B 32, 315 (2003). In these cases the antiferromagnetic itinerant state (of Slater type) transition into the same state of Mott type, which can be described by an effective Heisenberg model

    Article  ADS  Google Scholar 

  18. See e.g. T. Misawa, M. Imada, Phys. Rev. B 75, 115121 (2007)

    Article  ADS  Google Scholar 

  19. Experiment: I. Kézsmárki et al., Phys. Rev. Lett. 93, 266401 (2004)

    Article  Google Scholar 

  20. J. Spałek, R. Podsiadły, W. Wójcik, A. Rycerz, Phys. Rev. B 61, 15676 (2000)

    Article  ADS  Google Scholar 

  21. A. Rycerz, J. Spałek, Eur. Phys. J. B 40, 153 (2004)

    Article  ADS  Google Scholar 

  22. For review see: J. Spałek, E.M. Görlich, A. Rycerz, R. Zahorbeński, J. Phys.: Condens. Matter 19, 255212 (2007), pp. 1–43

    Article  ADS  Google Scholar 

  23. G. Kotliar et al., Rev. Mod. Phys. 78, 866 (2006), and references therein

    Article  ADS  Google Scholar 

  24. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 993 (1991)

    Article  ADS  Google Scholar 

  25. V.I. Anisimov, F. Aryasetiawa, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  26. J. Kurzyk, W. Wójcik, J. Spałek, Eur. Phys. J. B 66, 385 (2008), this paper is regarded as Part I

    Article  ADS  Google Scholar 

  27. J. Kurzyk, J. Spałek, W. Wójcik, Acta Phys. Polon. A 111, 603 (2007), cf. [arXiv:0706.1266] (2007)

    ADS  Google Scholar 

  28. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  29. E.H. Lieb, Physica A 321, 1 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. For review see: M. Takahashi, Thermodynamics of onedimensional solvable models (Cambridge University Press, 1999), Chap. 6

  31. W. Metzner, D. Vollhardt, Phys. Rev. B 37, 7382 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  32. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  33. M.C. Gutzwiller, Phys. Rev. 137, A1726 (2005)

    Article  MathSciNet  Google Scholar 

  34. A. Houghton, J.B. Marston, Phys. Rev. B 48, 7790 (1993)

    Article  ADS  Google Scholar 

  35. A. Houghton, J.B. Marston, Phys. Rev. B 50, 1351 (1994)

    Article  ADS  Google Scholar 

  36. A. Houghton, J.B. Marston, Phys. Rev. Lett. 72, 284 (1994)

    Google Scholar 

  37. K. Byczuk, J. Spałek, Phys. Rev. B 51, 7934 (1995)

    Article  ADS  Google Scholar 

  38. Strictly speaking, the Gutzwiller-ansatz approach may be regarded as equivalent with the saddle-point approximation of the slave-boson approach when discussed in the nonmagnetic case; see e.g. J. Spałek, W. Wójcik, in Spectroscopy of Mott Insulator and Correlated Metals, edited by A. Fujimori, Y. Tokura (Springer Verlag, Berlin, 1995), pp. 41–65

    Google Scholar 

  39. For a simple treatment of orbitally degenerate system within GA approach see e.g.: A. Klejnberg, J. Spałek, Phys. Rev. B 57, 12041 (1998), particularly Section IV

    Article  ADS  Google Scholar 

  40. The results of which can be related to LDA+U approach along the line discussed in: E.R. Ylvisaker, W.E. Picket, K. Koepernik, Phys. Rev. B 79, 035103 (2009)

    Article  ADS  Google Scholar 

  41. For LDA+Gutzwiller see: J. Bünemann et al., Europhys. Lett. 61, 667 (2003)

    Article  ADS  Google Scholar 

  42. G.-T. Wang, Z. Fang, Phys. Rev. Lett. 101, 066403 (2008)

    Article  ADS  Google Scholar 

  43. R.P. Feynman, Statistical Physics; A Set of Lectures (W.A. Benjamin, Inc. Reading, MA, 1972), Chap. 6.6

    Google Scholar 

  44. V.A. Fock, Raboty po kvantovoi teorii pola (in Russian) (Izdatelstvo Leningradskogo Universiteta, 1957), Chap. 2

  45. V.A. Fock, Z. Phys. 75, 622, (1932)

    Article  MATH  ADS  Google Scholar 

  46. S.S. Schweber, An Introduction to Relativistic Quantum Field Theory (Peterson and Co., Evanston, IL, 1961)

    Google Scholar 

  47. Even the original Schrödinger single-particle wave equation can be determined variationally, from Hamiltonian variational principle encompassing the compromise between the kinetic and the potential energies; see: E. Schrödinger, Ann. Phys. (Leipzig) 79, 1 (1926), particularly the Appendix

    Google Scholar 

  48. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms (Academic Press, New York, 1957), pp. 154–156

    Google Scholar 

  49. For overview of LDA approach see e.g. P.C. Hohenberg, W. Kohn, L.J. Sham, The Beginnings and Some Thoughts on the Future, in Advances in Quantum Chemistry, edited by S.B. Trickey (Academic Press Inc., San Diego, 1990), Vol. 21, pp. 7–20

    Google Scholar 

  50. W. Kohn, in Proc. 1966 Midwest Conf. Theoret. Phys. (Indiana University, Bloomington, IN, 1966), pp. 13–23

    Google Scholar 

  51. D. Vollhardt, P. Wölfle, in Electronic Phase Transitions, edited by W. Hanke, Yu.V. Kopaev (Elsevier, Amsterdam, 1992), cf. Chap. 1, particularly p. 41

    Google Scholar 

  52. F. Wegner, Z. Phys. B 32, 207 (1979)

    ADS  Google Scholar 

  53. For definition of Landau-Gutzwiller quasiparticles see e.g. J. Bünemann, F. Gebhard, R. Thul, Phys. Rev. B 67, 075103 (2003)

    Article  ADS  Google Scholar 

  54. Those quasiparticles have been defined on a phenomenological basis in: J. Spałek, A. Datta, J.M. Honig, Phys. Rev. B 33, 4891 (1986)

    Article  ADS  Google Scholar 

  55. The above papers follow the approach presented in: D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)

    Article  ADS  Google Scholar 

  56. For DFT+Gutzwiller application to ferromagnetic Ni see: W. Weber, J. Bünemann, F. Gebhard, in Bandferromagnetism, edited by K. Baberschke, M. Donath, W. Nolting (Springer Verlag, 2001), p. 9. The present proposal extends their approach to the MIT regime, as well as avoids the double counting problem

    Google Scholar 

  57. For recent extension of statistical (Landau-Gutzwiller) quasiparticles concept going beyond the Landau- Gutzwiller concept (cf. Refs. [53–56]) see: J. Kaczmarczyk, J. Spałek, Phys. Rev. B 79, 214519 (2009)

    Article  ADS  Google Scholar 

  58. J. Jȩdrak, J. Spałek, Phys. Rev. B 81 (2010), in press. Those extensions are relevant in e.g. spin-polarized (magnetic or in applied magnetic field) or superconducting states. In the present paper only the paramagnetic state is discussed

  59. W.J. Hehre, R.F. Stewart, J.A. Pople, J. Chem. Phys. 51, 2657 (1969)

    Article  ADS  Google Scholar 

  60. J. Fernández Rico, J.J. Fernández, R. López, G. Ramirez, Int. J. Quant. Chem. 78, 83 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Spałek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spałek, J., Kurzyk, J., Podsiadły, R. et al. Extended Hubbard model with the renormalized Wannier wave functions in the correlated state II: quantum critical scaling of the wave function near the Mott-Hubbard transition. Eur. Phys. J. B 74, 63–74 (2010). https://doi.org/10.1140/epjb/e2010-00077-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00077-6

Keywords

Navigation