Skip to main content
Log in

A Study of Hydrogen Accumulation in Multiwall Carbon Nanotubes by Electrochemical Techniques

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Accumulation of electrolytic hydrogen in alkaline medium (5 M KOH) by multiwall carbon nanotubes (MWCNTs) 20–60 nm in inner diameter and 2 μm in length obtained by catalytic pyrolysis of propane/butane mixture has been studied by means of the electrochemical diffusion technique, cyclic voltammetry, and impedance spectroscopy. MWCNTs were applied on a steel membrane and were encapsulated by a 10-nm electrolytic nickel layer. Cyclic voltammograms were recorded in the range of potentials from −1.2 to +0.2 V and contained a current peak in the cathode region corresponding to hydrogen absorption by nanotubes at −0.9 V and current peak in the anode region corresponding to oxidation of absorbed hydrogen at −0.6 V. Hydrogen storage capacity of MWCNTs varies from 4.6 to 6.5% depending on the amount of nanotubes according to electrochemical diffusion data. The electrochemical impedance data correlate with the results of the above methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Nature, 1991, vol. 354, p. 56.

    Article  Google Scholar 

  2. Fialkov, A.S., Formirovanie struktury i svoistva uglegrafitovykh materialov (Structuring and Properties of Coal-Graphite Materials), Moscow: Metallurgiya, 1965.

    Google Scholar 

  3. Fialkov, A.S., Uglegrafitovye materialy (Coal-Graphite Materials), Moscow: Energiya, 1979.

    Google Scholar 

  4. Pechkovskaya, K.A., Sazha kak usilitel’ kauchuka (The Implementation of Soot for Reinforcement of Caoutchouc), Moscow: Khimiya, 1968.

    Google Scholar 

  5. Tarasevich, Yu.G., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbo Materials), Moscow: Nauka, 1984.

    Google Scholar 

  6. Shvartsman, A.S. and Fialkov, A.S., Zh. Prikl. Khim., 1987, vol. 60, p. 1559.

    Google Scholar 

  7. Varentsov, V.K. and Varentsova, V.I., Khim. Interesakh Ustoich. Razvit., 2000, vol. 8, no. 3, p. 353.

    Google Scholar 

  8. Varentsov, V.K. and Varentsova, V.I., Russ. J. Appl. Chem., 2000, vol. 73, no. 10, p. 1742.

    Google Scholar 

  9. Varenstov, V.K. and Varentsova, V.I., Russ. J. Electrochem., 2001, vol. 37, no. 7, p. 690.

    Article  Google Scholar 

  10. Varenstov, V.K., Varentsova, V.I., Bataev I.A. Yusin S.I., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 1, p. 43.

    Article  Google Scholar 

  11. Shibaev, D.A., Orlov, V.Yu., Bazlov, D.A., and Vaganov, V.Yu., Khim. Khim. Tekhnol., 2011, vol. 54, no. 7, p. 38.

    Google Scholar 

  12. Vigdorovich, V.I., Tsygankova, L.E., Aleksashina, E.V., and Gladysheva, I.E., Korroz.: Mater., Zashch., 2010, no. 1, p. 8.

    Google Scholar 

  13. Vigdorovich, V.I., Tsygankova, L.E., Kichigin, V.I., and Gladysheva, I.E., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 207.

    Article  Google Scholar 

  14. Vigdorovich. V.I., Tsygankova, L.E., Kichigin, V.I., and Gladysheva, I.E., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 438.

    Article  Google Scholar 

  15. Tsygankova, L.E., Aleksashina, E.V., Gladysheva, I.E., and Vigdorovich, V.I., Kondens. Sredy Mezhfaznye Granitsy, 2009, vol. 11, no. 3, p. 249.

    Google Scholar 

  16. Bannov, A.G., Varentsov, V.K., Chukanov, I.S., Gorodilova, E.V., and Kuvshinov, G.G., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 2, p. 199.

    Article  Google Scholar 

  17. Pan, W., Zhang, X., Li, S., et al., Int. J. Hydrogen Energy, 2005, vol. 30, p. 719.

    Article  Google Scholar 

  18. Zhou, L., Zhou, Y., and Sun, Y., Int. J. Hydrogen Energy, 2006, vol. 31, p. 259.

    Article  Google Scholar 

  19. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., et al., Nature, 1997, vol. 386, p. 377.

    Article  Google Scholar 

  20. Ye, Y., Ahn, C.C., Witham, C., et al., Appl. Phys. Lett., 1999, vol. 74, p. 2307.

    Article  Google Scholar 

  21. Liu, C., Fan, Y.Y., Liu, M., et al., Science, 1999, vol. 286, p. 1127.

    Article  Google Scholar 

  22. Darkrim, F.L., Malbrunot, P., and Tartaglia, G.P., Int. J. Hydrogen Energy, 2002, vol. 27, p. 193.

    Article  Google Scholar 

  23. Nutzenadel, C., Zuttel, A., Chartouni, D., and Schlapbach, L., Electrochem. Solid-State Lett., 1999, vol. 2, p. 30.

    Article  Google Scholar 

  24. Vix-Guterl, C., Frackowiak, E., Jurewicz, K., et al., Carbon, 2005, vol. 43, p. 1293.

    Article  Google Scholar 

  25. Zhang, H., Fu, X., Chen, Y., et al., Physica B, 2004, vol. 352, p. 66.

    Article  Google Scholar 

  26. Chen, X., Zhang, Y., Gao, X.P., et al., Int. J. Hydrogen Energy, 2004, vol. 29, p. 743.

    Article  Google Scholar 

  27. Qin, X., Gao, X.P., Liu, H., et al., Electrochem. Solid- State Lett., 2000, vol. 3, p. 532.

    Article  Google Scholar 

  28. Rajalakshmi, N., Dhathathreyan, K.S., Govindaraj, A., and Satishkumar, B.C., Electrochim. Acta, 2000, vol. 45, p. 4511.

    Article  Google Scholar 

  29. Fazle Kibria, A.K.M., Mo, Y.H., Park, K.S., et al., Int. J. Hydrogen Energy, 2001, vol. 26, p. 823.

    Article  Google Scholar 

  30. Gundiah, G., Govindaraj, A., Rajalakshmi, N., et al., J. Mater. Chem., 2003, vol. 13, p. 209.

    Article  Google Scholar 

  31. Lee, S.M., Park, K.S., Choi, Y.C., et al., Synth. Met., 2000, vol. 113, p. 209.

    Article  Google Scholar 

  32. Zuttel, A., Sudan, P., Mauron, P., et al., Int. J. Hydrogen Energy, 2002, vol. 27, p. 203.

    Article  Google Scholar 

  33. Jones, C.P., Jurkschat, K., Crossley, A., et al., Langmuir, 2007, vol. 23, p. 9501.

    Article  Google Scholar 

  34. Niessen, R.A.H., de Longe, J., and Nottena, P.H.L., J. Electrochem. Soc., 2006, vol. 153, p. A1484.

    Google Scholar 

  35. Solodkova, L.N., Lyakhov, B.F., Lipson, A.G., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, p. 524.

    Article  Google Scholar 

  36. Tkachev, A.G., Perspekt. Mater., 2007, no. 3, p. 5.

    Google Scholar 

  37. Devanathan, M.A.V. and Stachurski, Z., Zashch. Met., 1995, vol. 31, p. 441.

    Google Scholar 

  38. Tsygankova, L.E., Vigdorovich, V.I., and Zvereva, A.A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 669.

    Article  Google Scholar 

  39. Lim, C. and Pyun, S.-I., Electrochim. Acta, 1993, vol. 38, p. 2645.

    Article  Google Scholar 

  40. Lasia, A., in Modern Aspects of Electrochemistry, Conway, B. and White, R., Eds., New York: Kluwer, 2002, vol. 35, p. 1.

  41. Gabrielli, C., Grand, P.P., Lasia, A., and Perrot, H., J. Electrochem. Soc., 2004, vol. 151, p. A1925.

    Google Scholar 

  42. Bockris, J.O.M., McBreen, J., and Nanis, L., J. Electrochem. Soc., 1965, vol. 112, p. 1025.

    Article  Google Scholar 

  43. Harrington, D.A. and Conway, B.E., Electrochim. Acta, 1987, vol. 32, p. 1703.

    Article  Google Scholar 

  44. Dull, D.L. and Nobe Ken, Corrosion, 1979, vol. 35, p. 535.

    Article  Google Scholar 

  45. Saito, Y. and Nobe Ken, Corrosion, 1980, vol. 36, p. 178.

    Article  Google Scholar 

  46. Zakroczymski, T., Scr. Mater., 1985, vol. 19, p. 521.

    Google Scholar 

  47. Diard, J.-P., J. Electroanal. Chem., 2003, vol. 557, p. 19.

    Article  Google Scholar 

  48. Bóbics, L., Sziráki, L., and Láng, G.G., Electrochem. Comm., 2008, vol. 10, p. 283.

    Article  Google Scholar 

  49. McNabb, A. and Foster, P.K., Trans. Metall. Soc. AIME, 1963, vol. 227, p. 618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kichigin.

Additional information

Original Russian Text © L.E. Tsygankova, V.I. Vigdorovich, A.A. Zvereva, V.I. Kichigin, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 2, pp. 142–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsygankova, L.E., Vigdorovich, V.I., Zvereva, A.A. et al. A Study of Hydrogen Accumulation in Multiwall Carbon Nanotubes by Electrochemical Techniques. Prot Met Phys Chem Surf 52, 211–217 (2016). https://doi.org/10.1134/S2070205116020301

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116020301

Keywords

Navigation