Skip to main content
Log in

Mid-latitude anomalies in the diurnal variation of electron density in the ionosphere

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The main morphological features of the F region of the mid-latitude ionosphere as obtained from Intercosmos-19 satellite measurements are presented. The causes of the anomalies in the diurnal variation of the electron density in certain longitudinal areas at the June and December solstice in the northern (Yakutsk anomaly) and southern (Weddell Sea anomaly (WSA)) hemispheres are determined. For both anomalies, the nighttime values of the critical frequency of the F2 layer, foF2, are higher than the daytime ones. Based on Intercosmos-19 satellite data, global maps of foF2 distribution for midday and midnight local time under high solar activity are drawn. Both anomalies occupy a large area in latitude and longitude, about 100° and 30°, respectively. The maximum difference between nighttime and daytime values of foF2 in the Yakutsk anomaly area reaches 1.0–1.5 MHz, smaller than that for the WSA (3.5–4.0 MHz). In the present work, these anomalies are reproduced with the help of a global self-consistent model of the thermosphere, ionosphere, and protonosphere (GSM TIP), and the mechanisms of their formation are preliminary investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eccles, J. W. King, and P. Rothwell, J. Atmos. Terr. Phys. 33, 371 (1971).

    Article  Google Scholar 

  2. M. G. Deminov and A. T. Karpachev, Geomagn. Aeron. 26, 63 (1986).

    Google Scholar 

  3. M. G. Deminov and A. T. Karpachev, Geomagn. Aeron. 26, 682 (1986).

    Google Scholar 

  4. W. H. Bellchambers and W. R. Piggott, Nature 182, 1596 (1958).

    Article  Google Scholar 

  5. R. Penndorf, Antarctic Research Series, Vol. 4: Geomagnetism and Aeronomy (Amer. Geophys. Union, Washington, DC, 1965).

    Google Scholar 

  6. J. W. Dungey, Phys. Rev. Lett. 6, 47 (1961).

    Article  Google Scholar 

  7. M. A. Clilverd, A. J. Smith, and N. R. Thomson, Planet. Space Sci. 39, 1059 (1991).

    Article  CAS  Google Scholar 

  8. I. Horvath and E. A. Essex, J. Atmos. Sol.-Terr. Phys. 65, 693 (2003). doi: 10.1016/S1364-6826(03)00083-X

    Article  Google Scholar 

  9. I. Horvath, J. Geophys. Res. 111, A12317 (2006). doi: 10.1029/2006JA011679

    Article  Google Scholar 

  10. G. Jee, A. G. Burns, Y. H. Kim, and W. Wang, J. Geophys. Res. 114, A04307 (2009). doi: 10.1029/2008JA013801

    Article  Google Scholar 

  11. I. Horvath and B. C. Lovell, J. Geophys. Res. 114, A02306 (2009). doi: 10.1029/2008JA013719

    Article  Google Scholar 

  12. A. G. Burns, Z. Zeng, W. Wang, et al., J. Geophys. Res. 113, A12305 (2008). doi: 10.1029/2008JA013308

    Article  Google Scholar 

  13. C. H. Lin, J. Y. Liu, C. Z. Cheng, et al., J. Geophys. Res. 114, A02312 (2009). doi: 10.1029/2008JA013455

    Article  Google Scholar 

  14. M. He, L. Liu, W. Wan, et al., J. Geophys. Res. 114, A12309 (2009). doi: 10.1029/2009JA014175

    Article  Google Scholar 

  15. A. T. Karpachev, N. A. Gasilov, and O. A. Karpachev, Geomagn. Aeron. 51, 812 (2011).

    Article  Google Scholar 

  16. A. P. Mamrukov, Geomagn. Aeron. 21, 984 (1971).

    Google Scholar 

  17. O. M. Pirog, N. M. Polekh, and L. V. Chistyakova, Geomagn. Aeron. 40, 235 (2000).

    Google Scholar 

  18. M. A. Knyazeva, Yu. V. Zubova, and A. A. Namgaladze, Vestn. Murm. State Tech. Univ. 13, 1068 (2010).

    Google Scholar 

  19. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. (PAGEOPH) 127, 219 (1988).

    Article  CAS  Google Scholar 

  20. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).

    Google Scholar 

  21. V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, Mat. Model. 18(3), 77 (2006).

    Google Scholar 

  22. M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).

    Article  Google Scholar 

  23. A. T. Karpachev and N. A. Gasilov, Geomagn. Aeron. 38, 617 (1998).

    Google Scholar 

  24. A. T. Karpachev and N. A. Gasilov, Geomagn. Aeron. 40, 481 (2000).

    Google Scholar 

  25. A. T. Karpachev and N. A. Gasilov, Adv. Space Res. 27, 1245 (2001).

    Article  Google Scholar 

  26. A. T. Karpachev and N. A. Gasilov, Int. J. Geomagn. Aeron. 6, GI2006 (2006).

    Article  Google Scholar 

  27. J. Oberheide, J. M. Forbes, X. Zhang, and S. L. Bruinsma, J. Geophys. Res. 116, A01306 (2011). doi: 10.1029/2010JA015911

    Article  Google Scholar 

  28. B. E. Brunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  29. I. A. Krinberg and A. V. Tashchilin, Ionosphere and Plasmosphere (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Klimenko.

Additional information

Original Russian Text © V.V. Klimenko, A.T. Karpachev, M.V. Klimenko, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 9, pp. 32–41.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimenko, V.V., Karpachev, A.T. & Klimenko, M.V. Mid-latitude anomalies in the diurnal variation of electron density in the ionosphere. Russ. J. Phys. Chem. B 7, 611–619 (2013). https://doi.org/10.1134/S1990793113050199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113050199

Keywords

Navigation