Skip to main content
Log in

Preparation of pH-sensitive nanoparticles with core-shell-corona morphology as an oral drug carrier

  • Medical Polymers
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

In this study, an oral cancer drug delivery system based on quercetin encapsulated polymeric nanoparticles was evaluated. Oral delivery of quercetin achieved using a pH-responsive nanoparticle system composed of amphiphilic brush-like copolymer, which were prepared from poly(ethylene glycol) as a hydrophilic domain, poly(ɛ-caprolactone) as a hydrophobic part and malic acid as a pH sensitive fragment. Synthesis of the brush-like copolymer was started by ring opening polymerization of ɛ-caprolactone (CL) in presence of DL-malic acid as an initiator. The polycaprolactone and methoxy poly(ethylene glycole) were acrylated with acryloyl chloride and then their copolymer were synthesized via free radical polymerization. All products were identified by FTIR and 1H NMR analysis. The nano-precipitation method was used for preparing drug (quercetin) loaded nanoparticles. The TEM images and zeta-sizer results showed that the size of the particles increases with increasing pH of media. The nanoparticles have core-shell-corona (CSC) morphology, and carboxyl groups in the shell are responsible for changing in the particle size during variation of the pH value. The drug release pattern was found biphasic with an initial burst followed by a slow, sustained release, which was remarkably affected by the pH of media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sonaje, Y. J. Chen, H. L. Chen, S. P. Wey, J. H. Juang, H. N. Nguyen, C. W. Hsu, K. J. Lin, and H. W. Sung, Biomaterials 31, 3384 (2010).

    Article  CAS  Google Scholar 

  2. C. Van Der Walle, Peptide and Protein Delivery (Acad. Press, New York, 2011), Chap. 8.

    Google Scholar 

  3. A. T. Florence, Drug Discovery Today: Technol. 2, 75 (2005).

    Article  CAS  Google Scholar 

  4. F. Schacher, M. Muller, H. Schmalz, and A. H. E. Muller, Macromol. Chem. Phys. 210, 256 (2009).

    Article  CAS  Google Scholar 

  5. L. Chu, T. Niitsuma, and T. Yamaguchi, AIChE J. 49, 896 (2003).

    Article  CAS  Google Scholar 

  6. T. Qu, A. Wang, J. Yuan, and Q. Gao, J. Colloid Interface Sci. 336, 865 (2009).

    Article  CAS  Google Scholar 

  7. W. S. Shim, S. W. Kim, E. K. Choi, H. J. Park, J. S. Kim, and D. S. Lee, Macromol. Biosci. 6, 179 (2006).

    Article  CAS  Google Scholar 

  8. P. Xu, E. A. Van Kirk, W. J. Murdoch, Y. Zhan, D. D. Isaak, M. Radosz, and Y. Shen, Biomacromolecules 7, 829 (2006).

    Article  CAS  Google Scholar 

  9. C. J. Lefaux, J. A. Zimberlin, A. V. Dobrynin, and P. T. Mather, J. Polym. Sci., Part B: Polym. Phys. 42, 3654 (2004).

    Article  CAS  Google Scholar 

  10. M. Chipara, I. Morjan, R. Alexandrescu, J. M. Zaleski, N. Remmes, and D. V. Baxter, J. Polym. Sci., Part B: Polym. Phys. 43, 3432 (2005).

    Article  CAS  Google Scholar 

  11. S. Kihlman, A. Krozer, J. Lausmaa, and B. Kasemo, J. Appl. Polym. Sci. 92, 2833 (2004).

    Article  Google Scholar 

  12. D. L. Xie, H. X. Ge, L. X. Zhang, and C. Z. Yang, J. Appl. Polym. Sci. 68, 205 (1998).

    Article  CAS  Google Scholar 

  13. B. Shi, C. Fang, M. X. You, Y. Zhang, S. Fu, and Y. Y. Pei, Colloid Polym. Sci. 283, 954 (2005).

    Article  CAS  Google Scholar 

  14. P. Xu, H. Tang, S. Li, J. Ren, E. A. Van Kirk, W. J. Murdoch, M. Radosz, and Y. Shen, Biomacromolecules 5, 1736 (2004).

    Article  CAS  Google Scholar 

  15. W. Dai, Y. Zhang, Z. Du, M. Ru, and M. Lang, J. Mater. Sci.: Mater. Med. 21, 1881 (2010).

    CAS  Google Scholar 

  16. S. M. Janib, A. S. Moses, and J. A. MacKay, Adv. Drug Delivery Rev. 62, 1052 (2010).

    Article  CAS  Google Scholar 

  17. D. Puppi, F. Chiellini, A. M. Piras, and E. Chiellini, Prog. Polym. Sci. 35, 403 (2010).

    Article  CAS  Google Scholar 

  18. V. P. Torchilin, Adv. Drug Delivery Rev. 58, 1532 (2006).

    Article  CAS  Google Scholar 

  19. A. K. Patri, J. F. Kukowska-Latallo, and J. R. Baker, Adv. Drug Delivery Rev. 57, 2203 (2005).

    Article  CAS  Google Scholar 

  20. Y. Obata, S. Tajimaand, and S. Takeoka, J. Controlled Release 142, 267 (2010).

    Article  CAS  Google Scholar 

  21. L. Zhou, R. Cheng, H. Tao, S. Ma, W. Guo, F. Meng, H. Liu, Z. Liu, and Z. Zhong, Biomacromolecules 12, 1460 (2011).

    Article  CAS  Google Scholar 

  22. D. Schmaljohann, Adv. Drug Delivery Rev. 58, 1655 (2006).

    Article  CAS  Google Scholar 

  23. M. Arotcarena, B. Heise, S. Ishaya, and A. Laschewsky, J. Am. Chem. Soc. 124, 3787 (2002).

    Article  CAS  Google Scholar 

  24. C. L. Lin, W. Y. Chiu, and C. F. Lee, Polymer 46, 10092 (2005).

    Article  CAS  Google Scholar 

  25. H. Wei, X. Z. Zhang, H. Cheng, W. Q. Chen, S. X. Cheng, and R. X. Zhuo, J. Controlled Release 116, 266 (2006).

    Article  CAS  Google Scholar 

  26. C. L. Lo, K. M. Lin, and G. H. Hsiue, J. Controlled Release 104, 477 (2005).

    Article  CAS  Google Scholar 

  27. D. L. Xie, D. Chen, B. Jiang, and C. Z. Yang, Polymer 41, 3599 (2000).

    Article  CAS  Google Scholar 

  28. B. P. Lee, K. Huang, F. N. Nunalee, K. R. Shull, and P. B. Messersmith, J. Biomater. Sci., Polym. Ed. 15, 449 (2004).

    Article  CAS  Google Scholar 

  29. S. Khoee, S. Hassanzadeh, and B. Goliaie, Nanotechnology 18, 175602 (2007).

    Article  Google Scholar 

  30. T. Higuchi, J. Pharm. Sci. 52, 1145 (1963).

    Article  CAS  Google Scholar 

  31. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Int. J. Pharm. 15, 25 (1983).

    Article  CAS  Google Scholar 

  32. J. Siepmann and N. A. Peppas, Adv. Drug Delivery Rev. 48, 139 (2001).

    Article  CAS  Google Scholar 

  33. D. L. Xie, Y. Hu, Q. D. Shen, and C. Z. Yang, J. Appl. Polym. Sci. 72, 667 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nikfarjam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikfarjam, N., Sabzi, M. & Sattari, A. Preparation of pH-sensitive nanoparticles with core-shell-corona morphology as an oral drug carrier. Polym. Sci. Ser. B 56, 871–882 (2014). https://doi.org/10.1134/S1560090414660038

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090414660038

Keywords

Navigation