Skip to main content
Log in

Electronic Properties of Branched Molecular Structures Review

  • BASIC RESEARCH
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The design of new types of macromolecular architecture is one of the main directions in the development of modern polymer physics. As applied to electronics, electroconductive π-conjugated molecules occupy a special place. In this review, the distinctive features of the electronic properties of organic semiconductors when compared with their solid-state analogs are considered. Special attention is paid to the role of electron–electron and electron–phonon interactions in the formation of self-localized excited states, i.e., solitons and polaritons. The constructive and destructive interference effects in molecular structures containing branching nodes and ring groups are discussed. The size of a branched molecule should herewith be small to conserve quantum coherence. Self-localization effects in such molecules are insignificant and transport is determined by electrons and holes injected from contacts. Two approaches to the description of quantum interference in branched molecules are proposed, notably, based on molecular orbitals and in the scope of the pattern of localized atomic orbitals. These approaches make it possible to formulate design rules for molecular structures, in which interference is observed. The latest results on the design of quantum-interference molecular transistors with ultralow energy consumption are presented. Nonconjugated tree-branched polymers, so-called dendrimers, which can be efficient for designing systems of the collection and transformation of electromagnetic radiation are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. J. Heeger, Rev. Mod. Phys. 73, 681 (2001).

    Article  ADS  Google Scholar 

  2. B. L. Feringa, Angew. Chem. Int. Ed. 56, 11060 (2017).

    Article  Google Scholar 

  3. M. C. Petty, Molecular Electronics: From Principles to Practice (Wiley-Interscience, 2007).

    Book  Google Scholar 

  4. Molecular Architectonics: The Third Stage of Single Molecule Electronics, Advances in Atom and Single Molecule Machines, Ed. by Ogawa Takuji (Springer, 2017).

    Google Scholar 

  5. J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

    Book  Google Scholar 

  6. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London, U. K.) 408, 541 (2000).

    Article  ADS  Google Scholar 

  7. Y. Li, J. A. Mol, S. C. Benjamin, and G. A. D. Briggs, Sci. Rep. 6, 33686 (2016).

    Article  ADS  Google Scholar 

  8. A. A. Gorbatsevich, G. Y. Krasnikov, and N. M. Shubin, Sci. Rep. 8, 15780 (2018).

    Article  ADS  Google Scholar 

  9. M. A. Leenen, V. Arning, H. Thiem, et al., Phys. Status Solidi A 206, 588 (2009).

    Article  ADS  Google Scholar 

  10. I. Botiz and S. B. Darling, Mater. Today 13 (5), 42 (2010).

    Article  Google Scholar 

  11. Large Area and Flexible Electronics, Ed. by M. Caironi and Y. Y. Noh, 2nd ed. (Wiley-VCH, 2015).

    Google Scholar 

  12. Introduction to Organic Electronic and Optoelectronic Materials and Devices, Ed. by S. S. Sun and L. R. Dalton, 2nd ed. (CRC Press, 2016).

    Google Scholar 

  13. H. Kandori, Y. Shichida, and T. Yoshizawa, Biochemistry 66, 1197 (2001).

    Google Scholar 

  14. A. K. Bakhshi and G. Bhalla, J. Sci. Ind. Res. 63, 715 (2004).

    Google Scholar 

  15. S. A. Brazovskii, JETP Lett. 28, 606 (1978).

    ADS  Google Scholar 

  16. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  17. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (!).

  18. M. Magoga and C. Joachim, Phys. Rev. B 59, 16011 (1999).

    Article  ADS  Google Scholar 

  19. H. Bässler and A. Köhler, in Unimolecular and Supramolecular Electronics I. Topics in Current Chemistry, Ed. by R. Metzger (Springer, Berlin, Heidelberg, 2011).

    Google Scholar 

  20. H. Fröhlich, Proc. R. Soc. London, Ser. A 223, 296 (1954).

    Article  ADS  Google Scholar 

  21. R. E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 2001).

    Book  MATH  Google Scholar 

  22. H. C. Longuet-Higgins and L. Salem, Proc. R. Soc. London, Ser. A 251, 172 (1959).

    Article  ADS  Google Scholar 

  23. J. A. Pople and S. H. Walmsley, Mol. Phys. 5, 15 (1962).

    Article  ADS  Google Scholar 

  24. A. A. Ovchinnikov, I. I. Ukrainskii, and G. F. Kventsel’, Sov. Phys. Usp. 15, 575 (1972).

    Article  ADS  Google Scholar 

  25. B. S. Hudson and B. E. Kohler, Chem. Phys. Lett. 14, 299 (1972).

    Article  ADS  Google Scholar 

  26. A. A. Gorbatsevich and M. N. Zhuravlev, JETP Lett. 100, 576 (2014).

    Article  ADS  Google Scholar 

  27. A. A. Gorbatsevich, M. N. Zhuravlev, T. S. Kataeva, and V. M. Kobryanskii, Nanotechnol. Russ. 11, 820 (2016).

    Article  Google Scholar 

  28. B. Huang, X. Liu, Y. Yuan, et al., J. Am. Chem. Soc. 140, 17685 (2018).

    Article  Google Scholar 

  29. M. H. Garner, H. Li, Y. Chen, et al., Nature (London, U. K.) 558, 415 (2018).

    Article  ADS  Google Scholar 

  30. J. Bails, A. Daaoub, S. Sangtarash, et al., Nat. Mater. 18, 364 (2019).

    Article  ADS  Google Scholar 

  31. J. Liu, X. Huang, F. Wang, and W. Hong, Acc. Chem. Res. 52, 151 (2019).

    Article  Google Scholar 

  32. Y. Li, M. Buerkle, G. Li, et al., Nat. Mater. 18, 357 (2019).

    Article  ADS  Google Scholar 

  33. J. Rincon, K. Hallberg, A. A. Aligia, and S. Ramasesha, Phys. Rev. Lett. 103, 266807 (2009).

    Article  ADS  Google Scholar 

  34. C. J. Lambert, Chem. Soc. Rev. 44, 875 (2015).

    Article  Google Scholar 

  35. A. A. Gorbatsevich, M. N. Zhuravlev, and V. V. Kapaev, J. Exp. Theor. Phys. 107, 288 (2008).

    Article  ADS  Google Scholar 

  36. D. Nozaki and W. G. Schmidt, J. Comput. Chem. 38, 1685 (2017).

    Article  Google Scholar 

  37. V. Kaliginedi, A. V. Rudnev, P. Moreno-García, et al., Phys. Chem. Chem. Phys. 16, 23529 (2014).

    Article  Google Scholar 

  38. J. Liu, X. Huang, F. Wang, and W. Hong, Acc. Chem. Res. 52, 1151 (2019).

    Google Scholar 

  39. K. G. L. Pedersen, A. Borges, P. Hedegard, et al., J. Phys. Chem. C 119, 26919 (2015).

    Article  Google Scholar 

  40. K. Yoshizawa, T. Tada, and A. Staykov, J. Am. Chem. Soc. 130, 9406 (2008).

    Article  Google Scholar 

  41. T. Markussen, R. Stadler, and K. S. Thygesen, Nano Lett. 10, 4260 (2010).

    Article  ADS  Google Scholar 

  42. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw-Hill, New York, 1969).

    Google Scholar 

  43. J. Xia, B. Capozzi, S. Wei, et al., Nano Lett. 14, 2941 (2014).

    Article  ADS  Google Scholar 

  44. A. A. Gorbatsevich and N. M. Shubin, Phys. Usp. 61, 1100 (2018).

    Article  ADS  Google Scholar 

  45. Y. Geng, S. Sangtarash, C. Huang, et al., J. Am. Chem. Soc. 137, 4469 (2015).

    Article  Google Scholar 

  46. S. X. Liu and C. J. A. Lambert, Chem. Eur. J. 24, 4193 (2018).

    Article  Google Scholar 

  47. G. C. Solomon, D. Q. Andrews, R. H. Goldsmith, et al., J. Am. Chem. Soc. 130, 17301 (2008).

    Article  Google Scholar 

  48. D. Mahan, Many Particle Physics (Kluwer Academic, New York, 2000).

    Book  Google Scholar 

  49. F. S. Miroshnichenko and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).

    Article  ADS  Google Scholar 

  50. A. Rabache, J. Chaste, P. Petit, et al., J. Am. Chem. Soc. 135, 10218 (2013).

    Article  Google Scholar 

  51. M. L. Perrin, R. Frisenda, M. Koole, et al., Nat. Nanotechnol. 9, 830 (2014).

    Article  ADS  Google Scholar 

  52. C. W. Hsu, B. Zhen, A. D. Stone, et al., Nat. Rev. Mater. 1, 1 (2016).

    Article  Google Scholar 

  53. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004; Pergamon, New York, 1977).

  54. A. A. Gorbatsevich and N. M. Shubin, Ann. Phys. 376, 353 (2017).

    Article  ADS  Google Scholar 

  55. A. A. Gorbatsevich and N. M. Shubin, Phys. Rev. B 96, 205441 (2017).

    Article  ADS  Google Scholar 

  56. M. Carlotti, Y. Liu, P. Wang, et al., Sci. Adv. 4, eaat8237 (2018).

  57. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763 (2011).

    Article  Google Scholar 

  58. V. Balzani, P. Ceroni, M. Maestri, and V. Vincinelli, Curr. Opin. Chem. Biol., No. 7, 657 (2003).

  59. S. Hecht and J. M. J. Fréchet, Angew. Chem. Int. Ed. Engl. 40, 74 (2001).

    Article  Google Scholar 

  60. A. Archut and G. Vögtle, Chem. Soc. Rev. 27, 233 (1998).

    Article  Google Scholar 

  61. D. S. Bradshaw and D. L. Andrews, Polymers 3, 2053 (2011).

    Article  Google Scholar 

  62. A. Olaya-Castro, and G. D. Scholes, Int. Rev. Phys. Chem. 30, 49 (2011).

    Article  Google Scholar 

  63. J. M. Serin, D. W. Brousmiche, and J. M. J. Fréchet, J. Am. Chem. Soc. 124, 11848 (2002).

    Article  Google Scholar 

  64. M. Marcos, R. Martín-Rapún, A. Omenat, and J. L. Serrano, Chem. Soc. Rev. 36, 1889 (2007).

    Article  Google Scholar 

  65. I. M. Saez and J. W. Goodby, J. Mater. Chem. 15, 26 (2005).

    Article  Google Scholar 

  66. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci. A 41, 2607 (2003).

    Article  Google Scholar 

  67. Dendrimers and Other Dendritic Polymers, Ed. by J. M. Frechet and D. A. Tomalia (Wiley, New York, 2001).

    Google Scholar 

  68. D. Astruc, E. Boisselier, and C. Ornelas, Chem. Rev. 110, 1857 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gorbatsevich.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatsevich, A.A., Zhuravlev, M.N. Electronic Properties of Branched Molecular Structures Review. Semiconductors 54, 1741–1750 (2020). https://doi.org/10.1134/S1063782620130072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620130072

Keywords:

Navigation