Skip to main content
Log in

Analytical and numerical treatment of resistive drift instability in a plasma slab

  • Waves and Instabilities in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear in unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Mirnov, C. C. Hegna, J. P. Sauppe, and C. R. Sovinec, Bull. APS 57, 90 (2012).

    Google Scholar 

  2. D. Grasso, M. Ottaviani, and F. Porcelli, Phys. Plasmas 8, 4306 (2001).

    Article  ADS  Google Scholar 

  3. D. Grasso, M. Ottaviani, and F. Porcelli, Nucl. Fusion 42, 1067 (2002).

    Article  ADS  Google Scholar 

  4. S. S. Moiseev and R. Z. Sagdeev, Zh. Tekh. Fiz. 34, 248 (1964).

    Google Scholar 

  5. A. B. Mikhailovskii, Nucl. Fusion 12, 55 (1972).

    Article  Google Scholar 

  6. A. B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous Plasma (Atomizdat, Moscow, 1971; IOP, Bristol, 1992).

    Google Scholar 

  7. M. Ottaviani, F. Porcelli, and D. Grasso, Phys. Rev. Lett. 93, 075001 (2004).

    Article  ADS  Google Scholar 

  8. F. Waelbroeck, J. Connor, and H. Wilson, Phys. Rev. Lett. 87, 215003 (2001).

    Article  ADS  Google Scholar 

  9. G. Ara, B. Basu, B. Coppi, G. Laval, M. N. Rosenbluth, and B. V. Waddel, Ann. Phys. 112, 443 (1978).

    Article  ADS  Google Scholar 

  10. V. V. Mirnov, C. C. Hegna, and S. C. Prager, Phys. Plasmas 11, 4468 (2004).

    Article  ADS  Google Scholar 

  11. P. K. Kaw and P. Guzdar, Report No. PPPL-1526 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1979).

    Google Scholar 

  12. T. M. Antonsen, Phys. Rev. Lett. 41, 33 (1979).

    Article  ADS  Google Scholar 

  13. E. Tassi, F. L. Waelbroeck, and D. Grasso, J. Phys. Conf. Ser. 260, 012020 (2010).

    Article  ADS  Google Scholar 

  14. B.N. Kuvshinov, Plasma Phys. Controlled Fusion 36, 867 (1994).

    Article  ADS  Google Scholar 

  15. J. Weiland, Collective Modes in Inhomogeneous Plasma (IOP, Bristol, 2000).

    Google Scholar 

  16. R. C. Sovinec, A. H. Glasser, T. H. Gianakon, D. C. Barnes, R. A. Nebel, S. E. Kruger, D. D. Schnack, S. J. Plimpton, A. Tarditi, M. S. Chu, J. Comput. Phys. 195, 355 (2004).

    Article  ADS  Google Scholar 

  17. R. C. Sovinec, J. R. King, J. Comput. Phys. 229, 5803 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Zhu, D. D. Schnack, F. Ebrahimi, E. G. Zweibel, M. Suzuki, C. C. Hegna, and C. R. Sovinec, Phys. Rev. Lett. 101, 085005 (2008).

    Article  ADS  Google Scholar 

  19. D. D. Schnack, J. Cheng, D. C. Barnes, and S. E. Parker, Phys. Plasmas 20, 062106 (2013).

    Article  ADS  Google Scholar 

  20. R. J. Goldstone and P. H. Rutherford, Introduction to Plasma Physics (Taylor & Francis, New York, 1995).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mirnov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirnov, V.V., Sauppe, J.P., Hegna, C.C. et al. Analytical and numerical treatment of resistive drift instability in a plasma slab. Plasma Phys. Rep. 42, 440–449 (2016). https://doi.org/10.1134/S1063780X16050123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16050123

Navigation