Skip to main content
Log in

Description of the two-humped mass distribution of fission fragments of mercury isotopes on the basis of the multidimensional stochastic model

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The dynamical model proposed earlier for describing fusion-fission reactions is applied to describing the two-humped mass distribution of fission fragments of mercury isotopes. In this model, the calculation of the time evolution of collective coordinates of the system is broken down into two stages. The first stage is that within which the projectile approaches the target nucleus, while the second is that of the evolution of the system formed after the touching of the projectile and target nuclei. The dynamical evolution of the system within both stages of the calculation is described on the basis of Langevin equations. The shell structure of colliding nuclei is taken into account at either stage of the calculation. Mass distributions are calculated for fragments originating from the fission of the mercury isotopes 190, 184Hg formed in the fusion-fission reactions 48Ca + 142Nd → 190Hg and 40Ar + 144Sm → 184Hg. The process in which the isotope 180Hg undergoes fission from the ground state is also calculated. The results obtained in this way are compared with the results of previous theoretical calculations and with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Hahn and F. Strassmann, Naturwissenshaften 27, 11 (1939); L. Meitner and O. R. Frisch, Nature 143, 239 (1939).

    Article  ADS  MATH  Google Scholar 

  2. N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  ADS  Google Scholar 

  3. Ya. I. Frenkel’, Zh. Eksp.Teor.Fiz. 9, 614 (1939).

    Google Scholar 

  4. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967).

    Article  ADS  Google Scholar 

  5. M. Brack, J. Damgaard, A. S. Jensen, et al., Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  6. V. V. Pashkevich, Nucl. Phys. A 169, 275 (1971).

    Article  ADS  Google Scholar 

  7. M. G. Itkis et al., Sov. J. Nucl. Phys. 52, 601 (1990).

    Google Scholar 

  8. A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010).

    Article  ADS  Google Scholar 

  9. Y. Abe, S. Ayik, P.-G. Reinhard, and E. Suraud, Phys. Rep. 275, 49 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Marten, and P. Fröbrich, Nucl. Phys. A 545, 854 (1992).

    Article  ADS  Google Scholar 

  11. P. N. Nadtochy et al., Phys. Rev. C 85, 064619 (2012).

    Article  ADS  Google Scholar 

  12. V. L. Litnevsky, G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. At. Nucl. 74, 1001 (2011).

    Article  Google Scholar 

  13. V. L. Litnevsky, G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. At. Nucl. 75, 37 (2012).

    Article  Google Scholar 

  14. V. L. Litnevsky, V. V. Pashkevich, G. I. Kosenko, and F. A. Ivanyuk, Phys. Rev. C 85, 034602 (2012).

    Article  ADS  Google Scholar 

  15. C. Shen, Y. Abe, D. Boilley, G. Kosenko, and E. Zhao, Int. J. Mod. Phys. E 17(Suppl01), 66 (2008).

    Article  ADS  Google Scholar 

  16. A. S. Iljinov, M. V. Mebel, N. Bianchi, et al., Nucl. Phys. A 543, 517 (1992).

    Article  ADS  Google Scholar 

  17. D. H. E. Gross and H. Kalinowski, Phys. Rep. 45, 175 (1978).

    Article  ADS  Google Scholar 

  18. W. D. Myers, and W. J. Swiatecki, Ark. Fys. 36, 343 (1967).

    Google Scholar 

  19. A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975).

    Google Scholar 

  20. V. L. Litnevsky, G. I. Kosenko, F. A. Ivanyuk, and V. V. Pashkevich, Phys. At. Nucl. 75, 1500 (2012).

    Article  Google Scholar 

  21. T. Ichikawa, A. Iwamoto, P. Möller, and A. J. Sierk, Phys. Rev. C 86, 024610 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Litnevsky.

Additional information

Original Russian Text © V.L. Litnevsky, G.I. Kosenko, F.A. Ivanyuk, V.V. Pashkevich, 2014, published in Yadernaya Fizika, 2014, Vol. 77, No. 2, pp. 190–197.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litnevsky, V.L., Kosenko, G.I., Ivanyuk, F.A. et al. Description of the two-humped mass distribution of fission fragments of mercury isotopes on the basis of the multidimensional stochastic model. Phys. Atom. Nuclei 77, 167–174 (2014). https://doi.org/10.1134/S1063778814010153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778814010153

Keywords

Navigation