Skip to main content
Log in

Microscopic study of the string breaking in QCD

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Theory of strong decays defines in addition to decay widths also the channel coupling and the mass shifts of the levels above the decay thresholds. In the standard decay models of the 3 P 0 type the decay vertex is taken to be a phenomenological constant γ and such a choice leads to large mass shifts of all meson levels due to real and virtual decays, the latter giving a divergent contribution. Here we show that taking the microscopic details of decay vertex into account, one obtains new string width effect coefficient, which strongly suppresses virtual decay contribution. In addition for a realistic space structure of the decay vertex of highly excited states, the decay matrix elements appear to be strongly different from those, where the constant γ is used. From our analysis also follows that so-called flattening potential can imitate the effects of intermediate decay channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Richard, Phys. Lett. B 100, 515 (1981); P. Hasenfratz et al., Phys. Lett. B 95, 299 (1980); D. P. Stanley and D. Robson, Phys. Rev. Lett. 45, 235 (1980); Phys. Rev. D 21, 3180 (1980); P. Cea, G. Nardulli, and G. Preparata, Z. Phys. C 16, 135 (1982); J. Carlson, J. Kogut, and V. R. Pandharipande, Phys. Rev. D 27, 233 (1983); J. L. Basdevant and S. Boukraa, Z. Phys. C 28, 413 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Godfry and N. Isgur, Phys. Rev. D 32, 189 (1985).

    Article  ADS  Google Scholar 

  3. S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).

    Article  ADS  Google Scholar 

  4. E. Eichten, K. Gottfried, T. Kinoshita, et al., Phys. Rev. D 17, 3090 (1978); Phys. Rev. D 21, 313(E) (1980); Phys. Rev.D21, 203 (1980); Phys. Rev. Lett. 36, 500 (1976).

    Article  ADS  Google Scholar 

  5. A. Yu. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Phys. Lett. B 323, 41 (1994); Phys. At. Nucl. 56, 1745 (1993); Nuovo Cimento A 107, 2499 (1994); E. L. Gubankova and A. Yu.Dubin, Phys. Lett. B 334, 180 (1994).

    Article  ADS  Google Scholar 

  6. Yu. A. Simonov, in QCD: Perturbative or Nonperturbative?, Ed. by L. Ferreira, P. Nogueira, and J. I. Silva-Marcos (World Scientific, Singapore, 2001); hep-ph/9911237.

  7. Yu. S. Kalashnikova, A. V. Nefediev, and Yu. A. Simonov, Phys. Rev. D 64, 014037 (2001).

    Article  ADS  Google Scholar 

  8. Yu. A. Simonov, Phys. Lett. B 515, 137 (2001); A. Di Giacomo and Yu. A. Simonov, Phys. Lett. B 595, 368 (2004).

    Article  ADS  MATH  Google Scholar 

  9. A. M. Badalian and B. L. G. Bakker, Phys. Rev. D 66, 034025 (2002).

    Article  ADS  Google Scholar 

  10. V. L. Morgunov, A. V. Nefediev, and Yu. A. Simonov, Phys. Lett. B 459, 653 (1999).

    Article  ADS  Google Scholar 

  11. Yu. A. Simonov and V. I. Shevchenko, Adv. High Energy Phys. 2009, 873051 (2009); arXiv:0902.1405 [hep-ph]; Yu. A. Simonov, arXiv:1003.3608 [hep-ph].

    Google Scholar 

  12. A. M. Badalian, Phys. At. Nucl. 74, 1375 (2011); arXiv:1011.5580 [hep-ph].

    Article  Google Scholar 

  13. A. M. Badalian, B. L. G. Bakker, and I. V. Danilkin, Phys. Rev. D 81, 071502 (2010).

    Article  ADS  Google Scholar 

  14. A. M. Badalian and B. L. G. Bakker, Phys. Rev. D 84, 034006 (2011); A.M. Badalian, B. L. G. Bakker, and I. V. Danilkin, Phys. At. Nucl. 74, 631 (2011).

    Article  ADS  Google Scholar 

  15. A. M. Badalian, Phys. At. Nucl. 66, 1342 (2003); A. M. Badalian, B. L. G. Bakker, and Yu. A. Simonov, Phys. Rev. D 66, 034026 (2002).

    Article  Google Scholar 

  16. S. M. Fedorov and Yu. A. Simonov, JETP Lett. 78, 57 (2003); hep-ph/0306216.

    Article  ADS  Google Scholar 

  17. E. van Beveren, C. Dullemond, and G. Rupp, Phys. Rev. D 21, 772 (1980); E. van Beveren, Z. Phys.C 17, 135 (1983); E. van Beveren, G. Rupp, T. A. Rijken, and C. Dullemond, Phys. Rev D 27, 1527 (1983); S. Jacobs, K. J. Miller, and M. G. Olsson, Phys. Rev. Lett. 50, 1181 (1983); G. Fogli and G. Preparata, Nuovo Cimento A 48, 235 (1978); A. K. A. Maciel and J. E. Paton, Nucl. Phys. B 181, 277 (1981); N. A. Törnqvist, Ann. Phys. 123, 1 (1979); M. Roos and N. A. Törnqvist, Z. Phys. C 5, 205 (1980); N. A. Törnqvist, Phys. Rev. Lett. 49, 624 (1982); Nucl. Phys. B 203, 268 (1982).

    Article  ADS  Google Scholar 

  18. Yu. A. Simonov, Phys. At. Nucl. 71, 1048 (2008); arXiv:0711.3626 [hep-ph]; Yu. A. Simonov and A. I. Veselov, Phys. Rev. D 79, 034024 (2009); I. V. Danilkin and Yu. A. Simonov, Phys. Rev. D 81, 074027 (2010).

    Article  Google Scholar 

  19. L. Micu, Nucl. Phys. B 10, 521 (1969); A. Le Yaouanc, L. Olivier, O. Pene, and J.-C. Raynal, Phys. Rev. D 8, 2223 (1973); Phys. Rev. D 9, 1415 (1974); Phys. Rev. D 11, 1272 (1975); M. B. Gavela et al., Phys. Rev. D 21, 182 (1980).

    Article  ADS  Google Scholar 

  20. N. Isgur and J. Paton, Phys. Rev. D 31, 2910 (1985); H. G. Blundell and S. Godfrey, Phys. Rev. D 53, 3700 (1996); T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, Phys. Rev. D 55, 4157 (1997); P. R. Page, Nucl. Phys. B 446, 189 (1995); P. Geiger and E. S. Swanson, Phys. Rev. D 50, 6855 (1994); H. Q. Zhou, R. G. Ping, and B. S. Zou, Phys. Lett. B 611, 123 (2005); X.-H. Guo, H.-W. Ke, X.-Q. Li, et al., Commun. Theor. Phys. 48, 509 (2007); J. Lu, W.-Z. Deng, X.-L. Chen, and S.-L. Zhu, Phys. Rev. D 73, 054012 (2006).

    Article  ADS  Google Scholar 

  21. E. S. Ackleh, T. Barnes, and E. S. Swanson, Phys. Rev. D 54, 6811 (1996).

    Article  ADS  Google Scholar 

  22. K. Heikkilä, N. A. Törnqvist, and S. Oho, Phys. Rev. D 29, 110 (1984); Yu. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005); M. R. Pennington and D. J. Wilson, Phys. Rev. D 76, 077502 (2007); T. Barnes and E. S. Swanson, Phys.Rev. C77, 055206 (2008); S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991); F. E. Close and E. S. Swanson, Phys. Rev. D 72, 094004 (2005); E. S. Swanson, J. Phys. G 31, 845 (2005); D. S. Hwang and D.-W. Kim, Phys. Lett. B 601, 137 (2004); E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 69, 094019 (2004); C. Hanhart, Yu. S. Kalashnikova, A. E. Kudryavtsev, and A. V. Nefediev, Phys. Rev. D 76, 034007 (2007); Yu. S. Kalashnikova, AIP Conf. Proc. 892, 318 (2007); Phys. Rev.D 72, 034010 (2005); C. Amsler and N. A. Törnqvist, Phys. Rep. 389, 61 (2004).

    Article  ADS  Google Scholar 

  23. P. Geiger and N. Isgur, Phys. Rev. D 41, 1595 (1990); Phys. Rev. D 44, 799 (1991); Phys. Rev. D 47, 5050 (1993).

    Article  ADS  Google Scholar 

  24. Yu. A. Simonov, Phys. Rev. D 84, 065013 (2011).

    Article  ADS  Google Scholar 

  25. Yu. A. Simonov, Phys. Usp. 39, 313 (1996); [hepph/9709344]; D. S. Kuzmenko, Yu. A. Simonov, and V. I. Shevchenko, Phys. Usp. 47, 1 (2004).

    Article  ADS  Google Scholar 

  26. L. Del Debbio, A. Di Giacomo, and Yu. A. Simonov, Phys. Lett. B 332, 111 (1994); N. Cardoso, M. Cardoso, and P. Bicudo, Phys. Lett. B 710, 343 (2012).

    Article  ADS  Google Scholar 

  27. R. W. Haymaker, V. Singh, Y. Peng, and J. Wosiek, Phys. Rev. D 53, 389 (1996); P. Bicudo, N. Cardoso, and M. Cardoso, arXiv:1010.3870 [hep-lat].

    Article  ADS  Google Scholar 

  28. H. G. Dosch, Phys. Lett. B 190, 177 (1987); H. G. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988); A. Di Giacomo, H. G. Dosch, V. I. Shevchenko, and Yu. A. Simonov, Phys. Rep. 372, 319 (2002).

    Article  ADS  Google Scholar 

  29. G. S. Bali, N. Brambilla, and A. Vairo, Phys. Lett. B 421, 265 (1998); Y. Koma and M. Koma, Nucl. Phys. B 769, 79 (2007).

    Article  ADS  Google Scholar 

  30. Yu. A. Simonov and A. I. Veselov, Phys. Lett. B 671, 55 (2009).

    Article  ADS  Google Scholar 

  31. I. V. Danilkin, V. D. Orlovsky, and Yu. A. Simonov, Phys. Rev. D 85, 034012 (2012).

    Article  ADS  Google Scholar 

  32. T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2005).

    Article  ADS  Google Scholar 

  33. A. M. Badalian, L. P. Kok, M. I. Polikarpov, and Yu. A. Simonov, Phys. Rep. 82, 31 (1982).

    Article  ADS  Google Scholar 

  34. Y.-B. Ding, K.-T. Chao, and D.-H. Qin, Chin. Phys. Lett. 10, 460 (1993); Phys. Rev. D 51, 5064 (1995); B.-Q. Li, C.Meng, and K.-T. Chao, Phys. Rev. D 80, 014012 (2009).

    Article  ADS  Google Scholar 

  35. M. Lüscher, Commun. Math. Phys. 104, 177 (1986); Commun. Math. Phys. 105, 153 (1986); Nucl. Phys. B 354, 531 (1991); Nucl. Phys. B 364, 237 (1991).

    Article  ADS  MATH  Google Scholar 

  36. C. McNeile and C. Michael (UKQCD Collab.), Phys. Lett. B 556, 177 (2003); C. Michael, Eur. Phys. J. A 31, 793 (2007); Z. Prkacin, G. S. Bali, Th. Düssel, et al., PoS LAT2005, 308 (2005); hep-lat/0510051.

    Article  ADS  Google Scholar 

  37. M. Donnellan, F. Knechtli, B. Leder, and R. Sommer, Nucl. Phys. B 849, 45 (2011).

    Article  ADS  MATH  Google Scholar 

  38. T. Burch et al. (Fermilab Lattice and MILC Collabs.), Phys. Rev. D 81, 034508 (2010); E. Follana et al. (HPQCD and UKQCD Collabs.), Phys. Rev. D 75, 054502 (2007); Y. Namekawa et al. (PACS-CS Collab.), PoS LATTICE 2008, 121 (2008); Phys. Rev. D 84, 074505 (2011); G. S. Bali et al., PoS LATTICE 2011, 135 (2011); S. M. Ryan (for the Hadron Spectrum Collab.), PoS LATTICE 2010, 124 (2010).

    Article  ADS  Google Scholar 

  39. G. S. Bali, S. Collins, and C. Ehmann, Phys. Rev. D 84, 094506 (2011).

    Article  ADS  Google Scholar 

  40. C. Morningstar et al., AIP Conf. Proc. 1441, 290 (2012); arXiv: 1109.0308 [hep-lat].

    Article  ADS  Google Scholar 

  41. T. Kawanai and S. Sasaki (U. Tokyo, RIKEN-BNL, and Brookhaven Collabs.), Phys. Rev. D 85, 091503 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Badalian.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badalian, A.M., Orlovsky, V.D. & Simonov, Y.A. Microscopic study of the string breaking in QCD. Phys. Atom. Nuclei 76, 955–964 (2013). https://doi.org/10.1134/S1063778813080048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813080048

Keywords

Navigation