Skip to main content
Log in

A nanohole in a thin metal film as an efficient nonlinear optical element

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 1013 W/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).

    Article  ADS  Google Scholar 

  2. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, Nat. Commun. 2, 333 (2011).

    Article  ADS  Google Scholar 

  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).

    Article  ADS  Google Scholar 

  4. M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).

    Article  ADS  Google Scholar 

  5. S. Palomba, M. Danckwerts, and L. Novotny, J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).

    Article  ADS  Google Scholar 

  6. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).

    Article  ADS  Google Scholar 

  7. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, Opt. Lett. 29, 62 (2004).

    Article  ADS  Google Scholar 

  8. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, Phys. Rev. Lett. 92, 057402 (2004).

    Article  ADS  Google Scholar 

  9. N. I. Zheludev and V. I. Emelyanov, J. Opt. A: Pure Appl. Opt. 6, 26 (2004).

    Article  ADS  Google Scholar 

  10. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, Nano Lett. 7, 1251 (2007).

    Article  ADS  Google Scholar 

  11. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).

    Article  ADS  Google Scholar 

  12. T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, Phys. Rev. Lett. 104, 113903 (2010).

    Article  ADS  Google Scholar 

  13. D. Pacifici, H. J. Lezec, and H. A. Atwater, Nat. Photonics 1, 402 (2007).

    Article  ADS  Google Scholar 

  14. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, Nat. Photonics 3, 55 (2009).

    Article  ADS  Google Scholar 

  15. S. Kim, J. H. Jin, Y. J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, Nature (London) 453, 757 (2008).

    Article  ADS  Google Scholar 

  16. I. Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, Nat. Photonics 5, 677 (2011).

    Article  ADS  Google Scholar 

  17. S. V. Fomichev and W. Becker, Phys. Rev. A: At., Mol., Opt. Phys. 81, 063201 (2010).

    Article  ADS  Google Scholar 

  18. S. V. Fomichev, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, J. Phys. B: At., Mol. Opt. Phys. 36, 3817 (2003).

    Article  ADS  Google Scholar 

  19. M. Lippitz, M. Dijk, and M. Orrit, Nano Lett. 5, 799 (2005).

    Article  ADS  Google Scholar 

  20. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, Nano Lett. 12, 992 (2012).

    Article  ADS  Google Scholar 

  21. Femtosecond laser EFOA-SH (Avesta, Troitsk, Moscow oblast, 2013). http://www.avesta.ru/pageseng/Femtosecond-Fiber-Laser-EFOA-SH/-172.htm.

  22. J. Renger, R. Quidant, and L. Novotny, Opt. Express 19, 1777 (2011).

    Article  Google Scholar 

  23. S. V. Fomichev, D. F. Zaretsky, and W. Becker, Phys. Rev. B: Condens. Matter 79, 085431 (2009).

    Article  ADS  Google Scholar 

  24. P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, Nanotechnology 20, 235301 (2009).

    Article  ADS  Google Scholar 

  25. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, Opt. Express 20, 19474 (2012).

    Article  ADS  Google Scholar 

  26. G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B: Condens. Matter 33, 7923 (1986).

    Article  ADS  Google Scholar 

  27. R. W. Boyd, Nonlinear Optics (Academic, London, 2003), p. 127.

    Google Scholar 

  28. P. B. Johnson and R. W. Christy, Phys. Rev. B: Solid State 6, 4370 (1972).

    Article  ADS  Google Scholar 

  29. A. D. Rakic, Appl. Opt. 34, 4755 (1995).

    Article  ADS  Google Scholar 

  30. W. K. Burns and N. Bloembergen, Phys. Rev. B: Solid State 4, 3437 (1971).

    Article  ADS  Google Scholar 

  31. G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B: Condens. Matter 33, 7923 (1986).

    Article  ADS  Google Scholar 

  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Florida, United States, 1985), Vol. I.

    Google Scholar 

  33. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, Orlando, Florida, United States, 1984).

    Google Scholar 

  34. T. Xu, X. Jiao, and S. Blair, Opt. Express 17, 23582 (2009).

    Article  ADS  Google Scholar 

  35. G. Mie, Ann. Phys. (Weinheim) 25, 377 (1908).

    Article  ADS  MATH  Google Scholar 

  36. E. Popov and N. Bonod, in Structured Surfaces as Optical Metamaterials, Ed. by A. A. Maradudin (Cambridge University Press, Cambridge, 2011), p. 1.

  37. T. Nakanishi, Y. Tamayama, and M. Kitano, Appl. Phys. Lett. 100, 044103 (2012).

    Article  ADS  Google Scholar 

  38. M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, Nano Lett. 11, 4674 (2011).

    Article  ADS  Google Scholar 

  39. S. Link, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B 104, 7867 (2000).

    Article  Google Scholar 

  40. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, A. V. Tausenev, A. V. Konyaschenko, and V. I. Balykin, Laser Phys. Lett. 10(7), 075901 (2013). doi:10.1088/1612-2011/10/7/075901

    Article  Google Scholar 

  41. V. I. Balykin and P. N. Melentiev, Nanotechnol. Russ. 4(7–8), 425 (2009)].

    Article  Google Scholar 

  42. N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R.L. Armstrong, C. W. White, R. A. Zuhr, and V. M. Shalaev, J. Nonlinear Opt. Phys. Mater. 8, 191 (1999).

    Article  ADS  Google Scholar 

  43. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, Opt. Express 19, 22743 (2011).

    Article  ADS  Google Scholar 

  44. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, JETP 115(2), 185 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Balykin.

Additional information

Original Russian Text © T.V. Konstantinova, P.N. Melent’ev, A.E. Afanas’ev, A.A. Kuzin, P.A. Starikov, A.S. Baturin, A.V. Tausenev, A.V. Konyashchenko, V.I. Balykin, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 1, pp. 27–40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinova, T.V., Melent’ev, P.N., Afanas’ev, A.E. et al. A nanohole in a thin metal film as an efficient nonlinear optical element. J. Exp. Theor. Phys. 117, 21–31 (2013). https://doi.org/10.1134/S1063776113080165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113080165

Keywords

Navigation