Skip to main content
Log in

Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: I. Electron-positron pair production

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kramer, A. G. Lyne, J. T. O’Brien, C. A. Jordan, and D. R. Lorimer, Science (Washington) 312, 549 (2006).

    Article  ADS  Google Scholar 

  2. M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, M. Kramer, A. J. Faulkner, R. N. Manchester, J. M. Cordes, F. Camilo, A. Possenti, I. H. Stairs, G. Hobbs, N. D’Amico, M. Burgay and J. T. O’Brien, Nature (London) 439, 817 (2006).

    Article  ADS  Google Scholar 

  3. E. F. Keane, D. A. Ludovici, R. P. Eatough, M. Kramer, A. G. Lyne, M. A. McLaughlin, and B. W. Stappers, Mon. Not. R. Astron. Soc. 401, 1057 (2010).

    Article  ADS  Google Scholar 

  4. Yu. P. Shitov, A. D. Kuz’min, D. V. Dumskii, and B. Ya. Losovsky, Astron. Rep. 53(6), 561 (2009).

    Article  ADS  Google Scholar 

  5. N. Wang, R. N. Manchester, and S. Johnston, Mon. Not. R. Astron. Soc. 377, 1383 (2007).

    Article  ADS  Google Scholar 

  6. A. Lyne, G. Hobbs, M. Kramer, I. Stairs, and B. Stappers, Science (Washington) 329, 408 (2010).

    Article  ADS  Google Scholar 

  7. Yu. P. Shitov, V. D. Pugachev, and S. M. Kutuzov, Astron. Soc. Pac. Conf. Ser. 202, 685 (2000).

    ADS  Google Scholar 

  8. V. M. Malofeev, O. I. Malov, D. A. Teplykh, S. A. Tyul’ba- shev, and G. E. Tyul’basheva, Astron. Rep. 49(3), 242 (2005).

    Article  ADS  Google Scholar 

  9. V. M. Malofeev, O. I. Malov, and D. A. Teplykh, Astrophys. Space Sci. 308, 211 (2007).

    Article  ADS  Google Scholar 

  10. V. M. Malofeev, D. A. Teplykh, and O. I. Malov, Astron. Rep. 54(11), 995 (2010).

    Article  ADS  Google Scholar 

  11. F. Camilo, S. M. Ransom, J. P. Halpern, J. Reynolds, D. J. Helfand, N. Zimmerman, and J. Sarkissian, Nature (London) 442, 892 (2006).

    Article  ADS  Google Scholar 

  12. F. Camilo, S. M. Ransom, J. P. Halpern, and J. Reynolds, Astrophys. J. Lett. 666, L93 (2007).

    Article  ADS  Google Scholar 

  13. L. Levin, M. Bailes, S. Bates, N. Bhat, M. Burgay, S. Burke-Spolaor, N. D’Amico, S. Johnston, M. Keith, M. Kramer, S. Milia, A. Possenti, N. Rea, B. Stappers, and W. van Straten, Astrophys. J. Lett. 721, L33 (2010).

    Article  ADS  Google Scholar 

  14. V. S. Beskin, Phys.—Usp. 42(11), 1071 (1999).

    Article  ADS  Google Scholar 

  15. A. V. Gurevich and Ya. N. Istomin, Mon. Not. R. Astron. Soc. 377, 1663 (2007).

    Article  ADS  Google Scholar 

  16. Ya. N. Istomin and D. N. Sobyanin, JETP 109(3), 393 (2009).

    Article  ADS  Google Scholar 

  17. Ya. N. Istomin and D. N. Sob’yanin, Astron. Rep. 54(4), 338 (2010).

    Article  ADS  Google Scholar 

  18. Ya. N. Istomin and D. N. Sob’yanin, Astron. Rep. 54(4), 355 (2010).

    Article  ADS  Google Scholar 

  19. A. V. Gurevich and Ya. N. Istomin, Sov. Phys. JETP 62(1), 1 (1985).

    Google Scholar 

  20. V. S. Beskin, A. V. Gurevich, and Ya. N. Istomin, Physics of the Pulsar Magnetosphere (Cambridge University Press, Cambridge, 1993), p. 193.

    MATH  Google Scholar 

  21. A. J. Deutsch, Ann. Astrophys. 18, 1 (1955).

    ADS  Google Scholar 

  22. C. S. Shukre and V. Radhakrishnan, Astrophys. J. 258, 121 (1982).

    Article  ADS  Google Scholar 

  23. M. A. Ruderman and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

    Article  ADS  Google Scholar 

  24. D. P. Barsukov, E. M. Kantor, and A. I. Tsygan, Astron. Rep. 51(6), 469 (2007).

    Article  ADS  Google Scholar 

  25. D. P. Barsukov, P. I. Polyakova, and A. I. Tsygan, Astron. Rep. 53(1), 86 (2009).

    Article  ADS  Google Scholar 

  26. Ya. N. Istomin and D. N. Sobyanin, Astron. Lett. 33(10), 660 (2007).

    Article  ADS  Google Scholar 

  27. V. S. Beskin, Astrofizika 18, 439 (1982).

    ADS  Google Scholar 

  28. A. A. Sokolov and I. M. Ternov, Synchrotron Radiation from Relativistic Electrons (Nauka, Moscow, 1974, p. 127; American Institute of Physics, New York, 1986).

    Google Scholar 

  29. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products(Fizmatlit, Moscow, 1963, p. 698; Academic, New York, 1980).

    Google Scholar 

  30. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics(Nauka, Moscow, 1984, p. 180; Birkhauser, Basel, Switzerland, 1988).

    MATH  Google Scholar 

  31. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Itogi Nauki Tekh., Ser.: Mat. Anal. 27, 3 (1989) [J. Sov. Math. 54, 1239 (1991)].

    MathSciNet  Google Scholar 

  32. Yu. A. Brychkov and A. P. Prudnikov, Integral Transformations of Generalized Functions(Nauka, Moscow, 1977, p. 44; Gordon and Breach, New York, 1989).

    Google Scholar 

  33. D. N. Sob’yanin, Candidate’s Dissertation (Phys.-Math.) (Moscow Institute of Physics and Technology, Moscow, 2010).

    Google Scholar 

  34. E. Pinney, Ordinary Difference-Differential Equations (University of California Press, Berkeley, California, 1958; Inostrannaya Literatura, Moscow, 1961).

    MATH  Google Scholar 

  35. M. V. Fedoryuk, Method of Steepest Descent (Nauka, Moscow, 1977), p.29 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. N. Istomin.

Additional information

Original Russian Text © Ya.N. Istomin, D.N. Sob’yanin, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 4, pp. 681–695.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Istomin, Y.N., Sob’yanin, D.N. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: I. Electron-positron pair production. J. Exp. Theor. Phys. 113, 592–604 (2011). https://doi.org/10.1134/S1063776111090056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111090056

Keywords

Navigation