Skip to main content
Log in

Influence of Collisions with Hydrogen Atoms on Non-LTE Effects for K I and Ca II in Stellar Atmospheres

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have constructed a new K I model atom using currently available atomic data. We have performed calculations for K I by abandoning the assumption of local thermodynamic equilibrium (non-LTE) for the Sun and three moderately metal-poor dwarf stars. To take into account the inelastic processes in collisions with hydrogen atoms, for the first time we have used the rate constants calculated by including the fine structure of K I levels and analyzed the influence of their application on the non-LTE results compared to the use of the rate constants calculated for combined levels. In agreement with the non-LTE studies available in the literature, K I is subject to overrecombination, which leads to a strengthening of spectral lines and negative abundance corrections. The non-LTE effects are shown to weaken when using new collisional data. We reached the same conclusion when comparing the non-LTE corrections calculated for the Ca II 8662 Å line in model atmospheres with \(\textrm{[Fe/H]}={-}4.5\) using the Ca II \(+\) H I collision rates derived with and without allowance for the fine structure of Ca II levels. However, the effect is very small for the other two triplet lines, Ca II 8498 and 8542 Å. The solar non-LTE abundance \(\log\varepsilon_{\textrm{K}}=5.09\pm 0.08\) derived from five lines is consistent with the meteoritic one within 0.01 dex. Despite the fact that in the atmospheres of the program stars the departures from LTE are larger than those in the Sun, the differential abundance [K/H] is almost independent of which collisional data set is used: the one calculated with or without allowance for the fine structure of K I levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.nist.gov/pml/atomic-spectra-database

  2. http://www.astro.uu.se/∼oleg/binmag.html

  3. http://marcs.astro.uu.se

REFERENCES

  1. S. M. Andrievsky, M. Spite, S. A. Korotin, F. Spite, P. Bonifacio, R. Cayrel, P. Francois, and V. Hill, Astron. Astrophys. 509, A88 (2010).

    Article  ADS  Google Scholar 

  2. P. S. Barklem, A. K. Belyaev, M. Guitou, N. Feautrier, F. X. Gadéa, and A. Spielfiedel, Astron. Astrophys. 530, A94 (2011).

    Article  ADS  Google Scholar 

  3. A. K. Belyaev, Y. V. Voronov, and F. X. Gadéa, Astrophys. J. 867, 87 (2018).

    Article  ADS  Google Scholar 

  4. A. K. Belyaev, Ya. V. Voronov, and S. A. Yakovleva, Phys. Rev. A 100, 062710 (2019).

    Article  ADS  Google Scholar 

  5. J. H. M. J. Bruls, R. J. Rutten, and N. G. Shchukina, Astron. Astrophys. 265, 237 (1992).

    ADS  Google Scholar 

  6. K. Butler and J. Giddings, Newslett. Anal. Astron. Spectra, No. 9, 723 (1985).

    Google Scholar 

  7. H.-W. Drawin, Zeitschr. Phys. 211, 404 (1968).

    ADS  Google Scholar 

  8. B. Gustafsson, B. Edvardsson, K. Eriksson, U. G. Jorgensen, A. Nordlund, and B. Plez, Astron. Astrophys. 486, 951 (2008).

    Article  ADS  Google Scholar 

  9. D. Ivanova and V. Shimanskii, Astron. Rep. 44, 376 (2000).

    Article  ADS  Google Scholar 

  10. B. Kaulakys, J. Phys. B: At. Mol. Phys. 24, L127 (1991).

    Article  ADS  Google Scholar 

  11. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, version 5.7.1 (2019).

  12. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm (Nature Solar Obs., Sunspot, New Mexico, 1984).

    Google Scholar 

  13. K. Lodders, H. Plame, and H.-P. Gail, Landolt-Börnstein—Group VI Astronomy and Astrophysics Numerical Data and Functional Relationships in Science and Technology, Vol. 4B: Solar System, Ed. by J. E. Trümper (2009), Sect. 4.4.

  14. L. Mashonkina, A. J. Korn, and N. Przybilla, Astron. Astrophys. 461, 261 (2007).

    Article  ADS  Google Scholar 

  15. L. Mashonkina, T. Gehren, J.-R. Shi, et al., Astron. Astrophys. 528, A87 (2011).

    Article  ADS  Google Scholar 

  16. L. Mashonkina, T. Sitnova, and A. K. Belyaev, Astron. Astrophys. 605, A53 (2017).

    Article  ADS  Google Scholar 

  17. A. Mucciarelli, T. Merle, and M. Bellazzini, Astron. Astrophys. 600, A104 (2017).

    Article  ADS  Google Scholar 

  18. M. A. C. Perryman, K. S. de Boer, G. Gilmore, E. Høg, M. G. Lattanzi, L. Lindegren, X. Luri, F. Mignard, O. Pace, and P. T. de Zeeuw, Astron. Astrophys. 369, 339 (2001).

    Article  ADS  Google Scholar 

  19. N. Prantzos, C. Abia, and M. Limongi, A. Chieffi, and S. Cristallo, Mon. Not. R. Astron. Soc. 476, 3432 (2018).

    Article  ADS  Google Scholar 

  20. H. van Regemorter, Astrophys. J. 136, 906 (1962).

    Article  ADS  Google Scholar 

  21. H. Reggiani, A. M. Amarsi, K. Lind, P. S. Barklem, O. Zatsarinny, K. Bartschat, D. V. Fursa, I. Bray, L. Spina, and J. Meléndez, Astron. Astrophys. 627, A177 (2019).

    Article  ADS  Google Scholar 

  22. T. Ryabchikova, N. Piskunov, R. L. Kurucz, H. C. Stempels, U. Heiter, Y. Pakhomov, and P. S. Barklem, Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  23. M. S. Safronova, U. I. Safronova, and C. W. Clark, Phys. Rev. A 87, 052504 (2013).

    Article  ADS  Google Scholar 

  24. N. G. Shchukina, Kinem. Fiz. Nebesn. Tel 3, 40 (1987).

    ADS  Google Scholar 

  25. T. Sitnova, G. Zhao, L. Mashonkina, Y. Q. Chen, F. Liu, Yu. Pakhomov, K. Tan, M. Bolte, S. Alexeeva, F. Grupp, J. R. Shi, and H. W. Zhang, Astrophys. J. 808, 148 (2015).

    Article  ADS  Google Scholar 

  26. T. Sitnova, L. Mashonkina, R. Ezzeddine, and A. Frebel, Mon. Not. R. Astron. Soc. 485, 3527 (2019).

    Article  ADS  Google Scholar 

  27. E. Starkenburg, V. Hill, E. Tolstoy, J. I. González Hernández, M. Irwin, A. Helmi, G. Battaglia, P. Jablonka, M. Tafelmeyer, M. Shetrone, K. Venn, and T. de Boer, Astron. Astrophys. 513, A34 (2010).

    Article  ADS  Google Scholar 

  28. W. Steenbock and H. Holweger, Astron. Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  29. M. Steinmetz, T. Zwitter, A. Siebert, F. G. Watson, K. C. Freeman, U. Munari, R. Campbell, M. Williams, et al., Astron. J. 132, 1645 (2006).

    Article  ADS  Google Scholar 

  30. Y. Takeda, K.-I. Kato, Y. Watanabe, and K. Sadakane, Publ. Astron. Soc. Jpn. 48, 511 (1996).

    Article  ADS  Google Scholar 

  31. R. Trubko, M. D. Gregoire, W. F. Holmgren, and A. D. Cronin, Phys. Rev. A 95, 052507 (2017).

    Article  ADS  Google Scholar 

  32. V. Tsymbal, T. Ryabchikova, and T. Sitnova, ASP Conf. Ser. 518, 247 (2019).

  33. S. A. Yakovleva, P. S. Barklem, and A. K. Belyaev, Mon. Not. R. Astron. Soc. 473, 3810 (2018).

    Article  ADS  Google Scholar 

  34. S. A. Yakovleva, Ya. V. Voronov, and A. K. Belyaev, Opt. Spectrosc. 127, 207 (2019).

    Article  ADS  Google Scholar 

  35. O. Zatsarinny and S. S. Tayal, Phys. Rev. A 81, 043423 (2010).

    Article  ADS  Google Scholar 

  36. H. W. Zhang, K. Butler, T. Gehren, J. R. Shi, and G. Zhao, Astron. Astrophys. 453, 723 (2006).

    Article  ADS  Google Scholar 

  37. G. Zhao, L. Mashonkina, H. L. Yan, S. Alexeeva, C. Kobayashi, Y. Pakhomov, J.-R. Shi, T. Sitnova, K. Tan, H.-W. Zhang, J. B. Zhang, Z. M. Zhou, M. Bolte, Y. Q. Chen, X. Li, F. Liu, and M. Zhai, Astrophys. J. 833, 225 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank H. Zhang for the provided observed stellar spectra, O. Zatsarinnyi for the data on the K I photoionization cross sections, and H. Reggiani for the excitation rate constants of K I transitions in collisions with H I atoms in the model by B. Kaulakys.

Funding

M.D. Neretina is grateful to the BASIS Foundation for the Development of Theoretical Physics and Mathematics for its partial support of the study. S.A. Yakovleva and A.K. Belyaev thank the Ministry of Education of Russia for its financial support within a State contract (project no. FSZN-2020-0026). M.N., L.M., and T.S. thank the Ministry of Science and Higher Education of the Russian Federation (project no. 13.1902.21.0039) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Neretina.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neretina, M.D., Mashonkina, L.I., Sitnova, T.M. et al. Influence of Collisions with Hydrogen Atoms on Non-LTE Effects for K I and Ca II in Stellar Atmospheres. Astron. Lett. 46, 621–629 (2020). https://doi.org/10.1134/S1063773720090054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720090054

Keywords:

Navigation