Skip to main content
Log in

Key thermodynamic characteristics of nucleation on charged and neutral cores of molecular sizes in terms of the gradient density functional theory

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The gradient density functional theory and the Carnahan–Starling model formulated for describing the contribution of hard spheres have been used to calculate the profiles of condensate density in small critical droplets formed via homogeneous nucleation, as well as in stable and critical droplets formed via heterogeneous nucleation on solid charged and neutral condensation cores of molecular sizes. The calculations performed for water and argon at different values of condensate chemical potential have yielded the heights of the activation barriers for homoand heterogeneous nucleation as functions of vapor supersaturation at preset system temperatures. The interaction of condensate molecules with a solid core has been described by the resultant potential of molecular attractive forces. In the case of a charged core, the long-range Coulomb potential of electric forces has additionally been taken into account. Dielectric permittivities have been calculated as known functions of the local density of the fluid and temperature. The radius of the equimolecular droplet surface has been chosen as a variable describing the droplet size. Dependences of the chemical potential of condensate molecules in a droplet on its size have been plotted for water and argon with allowance for the action of capillary, electrostatic, and molecular forces. It has been shown that the role of the molecular force potential in heterogeneous nucleation increases with the size of condensation cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Widom, B., Adv. Colloid Interface Sci., 1996, vol. 65, p. 71.

    Article  CAS  Google Scholar 

  2. Kuni, F.M., Shchekin, A.K., and Grinin, A.P., Phys. Usp. 2001, vol. 44, p. 331.

    Article  CAS  Google Scholar 

  3. Volmer, M., Kinetik der Phasenbildung, Leipzig Theodor Steinkopff, 1939.

    Google Scholar 

  4. Shchekin, A.K. and Podguzova, T.S., Atmos. Res., 2011, vol. 101, p. 493.

    Article  CAS  Google Scholar 

  5. Warshavsky, V.B., Podguzova, T.S., Tatyanenko, D.V., and Shchekin, A.K., J. Chem. Phys., 2013, vol. 138, p. 194708.

    Article  CAS  Google Scholar 

  6. Varshavskii, V.B., Podguzova, T.S., Tatyanenko, D.V., and Shchekin, A.K., Colloid J., 2013, vol. 75, p. 504.

    Article  Google Scholar 

  7. Thomson, J.J. and Thomson, G.P., Conduction of Electricity through Gases, Cambridge: Cambridge Univ. Press, 1928, p. 3.

    Google Scholar 

  8. Rusanov, A.I. and Kuni, F.M., Colloid J. USSR, 1982, vol. 44, p. 824.

    Google Scholar 

  9. Kuni, F.M., Shchekin, A.K., and Rusanov, A.I., Colloid J. USSR, 1983, vol. 45, p. 598.

    Google Scholar 

  10. Rusanov, A.I. and Kuni, F.M., J. Colloid Interface Sci., 1984, vol. 100, p. 264.

    Article  CAS  Google Scholar 

  11. Oxtoby, D.W. and Evans, R., J. Chem. Phys., 1988, vol. 89, p. 7521.

    Article  CAS  Google Scholar 

  12. Bykov, T.V. and Shchekin, A.K., Colloid J., 1999, vol. 61, p. 144.

    CAS  Google Scholar 

  13. Bykov, T.V. and Shchekin, A.K., Inorg. Mater., 1999, vol. 35, p. 641.

    Google Scholar 

  14. Baidakov, V.G. and Boltachev, G.Sh., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, p. 469.

    Article  CAS  Google Scholar 

  15. Baidakov, V.G. and Boltachev, G.Sh., J. Chem. Phys., 2004, vol. 121, p. 8594.

    Article  CAS  Google Scholar 

  16. Ghosh, S. and Ghosh, Sk., J. Chem. Phys., 2011, vol. 134, p. 024502.

    Article  Google Scholar 

  17. Merikanto, J., Vehkamäki, H., and Zapadinsky, E., J. Chem. Phys., 2004, vol. 121, p. 914.

    Article  CAS  Google Scholar 

  18. Blokhuis, E.M. and van Giessen, A.E., J. Phys.: Condens. Matter, 2013, vol. 25, p. 225003.

    Google Scholar 

  19. Wilhelmsen, O., Bedeaux, D., and Reguera, D., J. Chem. Phys., 2015, vol. 142, p. 064706.

    Article  Google Scholar 

  20. Kusaka, I., Wang, Z.-G., and Seinfeld, J.H., J. Chem. Phys., 1995, vol. 102, p. 913.

    Article  CAS  Google Scholar 

  21. Kusaka, I., Wang, Z.-G., and Seinfeld, J.H., J. Chem. Phys., 1995, vol. 103, p. 8993.

    Article  CAS  Google Scholar 

  22. Warshavsky, V.B. and Zeng, X.C., Phys. Rev. Lett., 2002, vol. 89, p. 246104.

    Article  CAS  Google Scholar 

  23. Kitamura, H. and Onuki, A., J. Chem. Phys., 2005, vol. 123, p. 124513.

    Article  Google Scholar 

  24. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys., 1958, vol. 28, p. 258.

    Article  CAS  Google Scholar 

  25. Nyquist, R.M., Talanquer, V., and Oxtoby, D.W., J. Chem. Phys., 1995, vol. 103, p. 1175.

    Article  CAS  Google Scholar 

  26. Obeidat, A. and Wilemski, G., Atmos. Res., 2006, vol. 82, p. 481.

    Article  CAS  Google Scholar 

  27. Kalikmanov, V., Wölk, J., and Kraska, T., J. Chem. Phys., 2008, vol. 128, p. 124506.

    Article  CAS  Google Scholar 

  28. Kiselev, S.V. and Ely, J.F., J. Chem. Phys., 2003, vol. 119, p. 8645.

    Article  CAS  Google Scholar 

  29. Kostrowicka Wyczalkowska, A., Abdulkadirova, Kh.S., Anisimov,M.A., and Sengers, J.V., J. Chem. Phys., 2000, vol. 113, p. 4985.

    Article  Google Scholar 

  30. Baidakov, V.G., Explosive Boiling of Superheated Cryogenic Liquids, Berlin Wiley-VCH, 2007.

    Book  Google Scholar 

  31. Haar, L., Gallagher, J.S., and Kell, G.S., http://wwwthermopediacom/content/1150/

  32. Shchekin, A.K., Lebedeva, T.S., and Tatyanenko, D.V., Fluid Phase Equilib., 2016, vol. 424, p. 162.

    Article  CAS  Google Scholar 

  33. Stewart, R.B. and Jacobsen, R.T., J. Phys. Chem. Ref. Data, 1989, vol. 18, p. 639.

    Article  CAS  Google Scholar 

  34. Fernandez, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt Sengers, J.M.H., and Williams, R.C., J. Phys. Chem. Ref. Data, 1997, vol. 26, p. 1125.

    Article  CAS  Google Scholar 

  35. Archer, D.G. and Wang, P., J. Phys. Chem. Ref. Data, 1990, vol. 19, p. 371.

    Article  CAS  Google Scholar 

  36. Schmidt, J.W. and Moldover, M.R., Int. J. Thermophys., 2003, vol. 24, p. 375.

    Article  CAS  Google Scholar 

  37. Zubkov, V.V., Grinev, I.V., and Samsonov, V.M., Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 3, p. 52.

    Google Scholar 

  38. Henderson, J.R. and Van Swol, F., Mol. Phys., 1984, vol. 51, p. 991.

    Article  CAS  Google Scholar 

  39. Oxtoby, D.W., Acc. Chem. Res., 1998, vol. 31, p. 91.

    Article  CAS  Google Scholar 

  40. Uline, M.J. and Corti, D.S., J. Chem. Phys., 2008, vol 129, p. 234507.

    Google Scholar 

  41. Rusanov, A.I., Surf. Sci. Rep., 1996, vol. 23, p. 173.

    Article  CAS  Google Scholar 

  42. Rusanov, A.I., Surf. Sci. Rep., 2005, vol. 58, p. 111.

    Article  CAS  Google Scholar 

  43. Rusanov, A.I., Shchekin, A.K., and Tatyanenko, D.V., J. Chem. Phys., 2009, vol. 131, p. 161104.

    Article  CAS  Google Scholar 

  44. Rusanov, A.I., Tatyanenko, D.V., and Shchekin, A.K., Colloid J., 2010, vol. 72, p. 673.

    Article  CAS  Google Scholar 

  45. Napari, I. and Laaksonen, A., J. Chem. Phys., 2003, vol. 119, p. 10363.

    Article  CAS  Google Scholar 

  46. Bykov, T.V. and Zeng, X.C., J. Chem. Phys., 2006, vol. 125, p. 144515.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Additional information

Original Russian Text © A.K. Shchekin, T.S. Lebedeva, D.V. Tatyanenko, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 4, pp. 520–533.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchekin, A.K., Lebedeva, T.S. & Tatyanenko, D.V. Key thermodynamic characteristics of nucleation on charged and neutral cores of molecular sizes in terms of the gradient density functional theory. Colloid J 78, 553–565 (2016). https://doi.org/10.1134/S1061933X16040165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16040165

Navigation