Skip to main content
Log in

Experimental Observation of Island-Type Films of C60F18 Polar Molecules on the Surface of Highly Oriented Pyrolytic Graphite

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of the adsorption of C60F18 fullerene fluoride molecules with high dipole moment on a graphene-like surface in order to investigate the possibility of creating interfaces with given physical and chemical characteristics and controlling their properties. Using atomic force microscopy, X-ray photoelectron spectroscopy, and quantum chemical calculations, the island structure of thin films of C60F18 polar molecules on the surface of highly oriented pyrolytic graphite has been first found. The chemical stability of fluorinated fullerene molecules in the adsorbed film and the island growth of the film according to the Volmer–Weber mechanism up to large degrees of coverage have been established. The nature of the interaction between adsorbate molecules and the substrate has been determined. The influence of collective electrostatic effects on the structure of the monolayer, the total energy of the system, and the shift of the core electronic levels have been concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Aviram and M. Ratner, Molecular Electronics: Science and Technology (New York Academy of Sciences, New York, 1998).

    Google Scholar 

  2. J. R. Heath and M. A. Ratner, Phys. Today 56, 43 (2003).

    Article  CAS  Google Scholar 

  3. G. Cuniberti, G. Fagas, and K. Richter, Introducing Molecular Electronics (Springer, Berlin, 2005).

    Book  Google Scholar 

  4. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 183 (1987).

    Article  Google Scholar 

  5. G. Horowitz, Adv. Mater. 10, 365 (1998).

    Article  CAS  Google Scholar 

  6. A. Hagfeldt and M. Gratzelx, Acc. Chem. Res. 33, 269 (2000).

    Article  CAS  Google Scholar 

  7. M. A. Green, Y. Hishikawa, E. D. Dunlop, et al., Prog. Photovoltaics 26 (1), 3 (2018).

    Article  Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    CAS  Google Scholar 

  9. R. R. Nair, P. Blake, A. N. Grigorenko, et al., Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  10. X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).

    CAS  Google Scholar 

  11. J. E. Johns and M. C. Hersam, Acc. Chem. Res. 46, 77 (2013).

    Article  CAS  Google Scholar 

  12. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).

    Article  CAS  Google Scholar 

  13. Y. Zhu, S. Murali, W. Cai, et al., Adv. Mater. 22, 3906 (2010).

    Article  CAS  Google Scholar 

  14. M. Khan, M. N. Tahir, S. F. Adil, et al., J. Mater. Chem. A 3, 18753 (2015).

    Article  CAS  Google Scholar 

  15. Yu. Dedkov and E. Voloshina, J. Electron Spectr. Related Phenomena 219, 77 (2017).

    Article  CAS  Google Scholar 

  16. D. Chronopoulos, A. Bakandritsos, M. Pykal, et al., Appl. Mater. Today 9, 60 (2017).

    Article  Google Scholar 

  17. S. Bala Kumar and J. Guo, Appl. Phys. Lett. 98, 222101 (2011).

    Article  Google Scholar 

  18. L. P. Sukhanov, R. G. Chumakov, A. V. Goryachevskiy, et al. J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 12 (4), 761 (2018).

    Article  CAS  Google Scholar 

  19. A. Freedman, Diamond Relat. Mater 4, 216 (1995).

    Article  CAS  Google Scholar 

  20. D. S. Wastl, A. J. Weymouth, and F. J. Giessibl, ACS NANO 8 (5), 5233 (2014).

    Article  CAS  Google Scholar 

  21. D. S. Wastl, A. J. Weymouth, and F. J. Giessibl, Phys. Rev. B87, 245415 (2013).

    Article  Google Scholar 

  22. N. Yu. Svechnikov, V. G. Stankevich, K. A. Men’shikov, and A. M. Lebedev, RF Patent No. 2 471 705 (10 January 2013).

  23. I. V. Goldt, O. V. Boltalina, L. N. Sidorov, et al., Solid State Sci. 4 (11–12), 1395 (2002).

    Article  CAS  Google Scholar 

  24. J. V. Rau, S. Nunziante Cesaro, O. V. Boltalina, et al., Vibr. Spectr 34, 137 (2004).

    Article  CAS  Google Scholar 

  25. S. Tanuma, D. J. Powell, and D. R. Penn, Surf. Interface Anal. 21 (3), 165 (1994).

    Article  CAS  Google Scholar 

  26. A. M. Ferrari, J. D. Lopes da Silva, and A. M. Botelho do Rego, Polymer 44, 7241 (2003).

    Article  Google Scholar 

  27. S. Fujinaga, Molecular Orbital Method (Mir, Moscow, 1983) [in Russian].

  28. I. G. Kaplan, Intermolecular Interactions. Physical Interpretation, Computer- Assisted Calculations, and Model Potentials (BINOM. Laboratoriya znanii, Moscow, 2012).

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN03. Revision B.03 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN98. Revision A.3. (Gaussian Inc., Pittsburgh, PA, 1998).

    Google Scholar 

  31. R. D. Dennington II, T. A. Keith, J. M. Millam, et al., GaussView, Version 5.0.8 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  32. K. Kobayashi, Phys. Rev. B48, 1757 (1993).

    Article  Google Scholar 

  33. K. Oura, V. G. Lifshits, A. A. Saranin, et al., Surface Science: An Introduction (Springer, Heidelberg–New York, 2003).

    Book  Google Scholar 

  34. A. A. Popov, V. M. Senyavin, V. I. Korepanov, et al., Phys. Rev. B 79, 045413 (2009).

    Article  Google Scholar 

  35. S. Huefner, Photoelectron Spectroscopy: Principles and Applications (Springer, Berlin, 1996).

    Book  Google Scholar 

  36. T. C. Taucher, I. Hehn, O. T. Hofmann, et al., J. Phys. Chem. C 120 (6), 3428 (2016).

    Article  CAS  Google Scholar 

  37. Y. Sato, K. Itoh, R. Hagiwara, et al., Carbon 42, 3243 (2004).

    Article  CAS  Google Scholar 

  38. T. Abu-Husein, S. Schuster, D. A. Egger, et al., Adv. Funct. Mater 25, 3943 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. L.N. Sidorov and Dr. Sc. A.A. Goryunkov (Chemistry Department of the Moscow State M.V. Lomonosov University) for providing C60F18 powder, and also to K.I. Maslakov, Yu.V. Grishchenko, I.O. Mayboroda and M.L. Zanaveskin (NRC “Kurchatov Institute”) for assistance in conducting measurements.

Funding

The work was supported by the NRC “Kurchatov Institute” (order from 25 October 2018, no. 2683).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Goryachevskiy or L. P. Sukhanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryachevskiy, A.V., Sukhanov, L.P., Lebedev, A.M. et al. Experimental Observation of Island-Type Films of C60F18 Polar Molecules on the Surface of Highly Oriented Pyrolytic Graphite. J. Surf. Investig. 13, 934–940 (2019). https://doi.org/10.1134/S102745101905029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101905029X

Keywords:

Navigation