Skip to main content
Log in

Fabrication on the Flexible Supercapacitor Based on the Polypyrrole Deposited on Polyethylene/Polypropylene Non-Woven Film

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Non-woven films of polypropylene/polyethylene (PP/PE) are usually used as filter membrane or diaphragm because of their excellent mechanical strength and chemical stability. Here, by using PP/PE as substrates, the composite films of FeTS/(PP/PE) are prepared via drop-coating iron p-toluenesulfonate (FeTS) on the PP/PE. Polypyrrole (PPy) is then deposited on PP/PE non-woven films to form the PPy/(PP/PE) composites by reacting the pyrrole vapor with oxidant of FeTS. The structure of PPy/(PP/PE) prepared under different conditions have been characterized in detail. Using H3PO4/polyvinyl alcohol (PVA) as the gel electrolyte, the flexible symmetric electrochemical capacitors (FEC) of PPy/(PP/PE)//PPy (PP/PE) are prepared and the properties of the devices are determined. The results show that the optimized FEC exhibits relatively high areal specific capacitance (246.6 mF cm–2 at 2 mV s–1 scan rate), excellent cyclic stability (capacitance retention is 92.5% after 20 000 cycles), and excellent flexibility (the capacitance retention is 90.0% after 2000 and 81.3% after 3000 repeated bending cycles), which indicate that this kind of FEC may have potential application in flexible electronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wang, B.J., Fang, X., and Sun, H, Fabricating continuous supercapacitor fibers with high performances by Integrating all building materials and steps into one process, Adv. Mater., 2015, vol. 27, p. 7854.

    Article  CAS  PubMed  Google Scholar 

  2. Lyu, S.Y., Chang, H.J., and Fu, F, Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability, J. Power Sources, 2016, vol. 327, p. 438.

    Article  CAS  Google Scholar 

  3. Yun, T.G., Hwang, B.I., and Kim, D, Polypyrrole-MnO2-coated textile- based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Int., 2015, vol. 7, p. 9228.

    Article  CAS  Google Scholar 

  4. Yuksel, R., Coskun, S., Kalay, Y.E., and Unalan, H.E., Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors, J. Power Sources, 2016, vol. 328, p. 167.

    Article  CAS  Google Scholar 

  5. Mohamed, S.T., Soufeena, P.P., and Niveditha, C.V., Electrochemical Investigation of activated carbon electrode supercapacitors, Russ. J. Electrochem., 2018, vol. 54, p. 302.

    Article  Google Scholar 

  6. He, S.S., Chen, P.N., and Qiu, L.B., A mechanically actuating carbon-nanotube fiber in response to water and moisture, Angew. Chem. Int. Ed., 2015, vol. 54, p. 14880.

    Article  CAS  Google Scholar 

  7. Fan, L. and Maier, J., High-performance polypyrrole electrode materials for redox supercapacitors, Electrochem. Commun., 2006, vol. 8, p. 937.

    Article  CAS  Google Scholar 

  8. Chang, Y.H., Han, G.Y., and Xiao, Y.M., Internal tandem flexible and compressible electrochemical capacitor based on polypyrrole/carbon fibers, Electrochim. Acta, 2017, vol. 257, p. 335.

    Article  CAS  Google Scholar 

  9. Volfkovich, Yu.M., Sosenkin, V.E., and Evseev, A.K., The effect of electrochemical modification of activated carbons by polypyrrole on their structure characteristics, composition of surface compounds, and adsorption properties, Russ. J. Electrochem., 2017, vol. 53, p. 1334.

    Article  CAS  Google Scholar 

  10. Reddy, K.R., Lee, K.P., Gopalan, A.I., and Showkat, A.M., Facile synthesis of hollow spheres of sulfonated polyanilines, Polym. J., 2006, vol. 38, p. 349.

    Article  CAS  Google Scholar 

  11. Yuan, L.Y., Yao, B., Hu, B., et al., Pollypyrrole-coated paper for flexible solid-state energy storage, J. Energy Environ. Sci., 2013, vol. 6, p. 470.

    Article  CAS  Google Scholar 

  12. Ramadoss, A., Saravanakumar, B., and Kim, S.J., Thermally reduced grapheme oxide-coated fabrics for flexible supercapacitors and self-powered systems, Nano Energy, 2015, vol. 15, p. 587.

    Article  CAS  Google Scholar 

  13. Chen, P.C., Shen, G.Z., and Shi, Y., Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single walled carbon nanotube hybrid thin-film electrodes, ACS Nano, 2010, vol. 4, p. 4403.

    Article  CAS  PubMed  Google Scholar 

  14. Reddy, K.R., Sin, B.C., and Ryu, K.S., Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties, Synth. Met., 2009, vol. 159, p. 595.

    Article  CAS  Google Scholar 

  15. Nateghi, M.R., Negahbanfard, H., and Kavoosi, S., Study of life time and energy conversion efficiency in bi-layer and tri-layer polymer actuators, Russ. J. Electrochem., 2014, vol. 50, p. 274.

    Article  CAS  Google Scholar 

  16. Huang, Y., Li, H.F., and Wang, Z.F., Nanostructured polypyrrole as a flexible electrode material of supercapacitor, Nano Energy, 2016, vol. 22, p. 422.

    Article  CAS  Google Scholar 

  17. Deng, J., Zhang, Y., and Zhao, Y., A shape-meory supercapacitor fiber, Angew. Chem. Int. Ed., 2015, vol. 127, p. 15639.

    Article  Google Scholar 

  18. Zhou, H.H., Han, G.Y., and Xiao, Y.M., Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors, J. Power Sources, 2014, vol. 263, p. 259.

    Article  CAS  Google Scholar 

  19. Bandyopadhyay, P., Kuila, T., and Balamurugan, J., Facile synthesis of novel sulfonated polyaniline functionalized grapheme using m-aminoben zene sulfonic acid for asymmetric supercapacitor application, Chem. Eng. J., 2017, vol. 308, p. 1174.

    Article  CAS  Google Scholar 

  20. Fan, Y.M., Song, W.L., Li, X.G., and Fan, L.Z., Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors, Carbon, 2017, vol. 111, p. 658.

    Article  CAS  Google Scholar 

  21. Lee, H., Kim, H., and Cho, M.S., Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications, Electrochim. Acta, 2011, vol. 56, p. 7460.

    Article  CAS  Google Scholar 

  22. Tamm, J., Johanson, U., Marandi, M., Tamm, T., and Tamm, L., Study of the properties of electrodeposited polypyrrole films, Russ. J. Electrochem., 2004, vol. 40, p. 344.

    Article  CAS  Google Scholar 

  23. Meng, Q.F., Cai, K.F., Chen, Y.X., and Chen, L.D., Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy, 2017, vol. 36, p. 268.

    Article  CAS  Google Scholar 

  24. Humpolicek, P., Kasparkova, V., Saha, P., and Stejskal. J., Biocompatibility of polyaniline, Synth. Met., 2012, vol. 162, p. 722.

    Article  CAS  Google Scholar 

  25. Yang, Q., Hou, Z., and Huang, T., Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications, J. Appl. Polym. Sci., 2015, vol. 132, p. 2.

    Google Scholar 

  26. Li, M. and Yang, L., Intrinsic flexible polypyrrole film with excellent electrochemical performance, J. Mater. Sci. Mater. Electron., 2015, vol. 26, p. 4875.

    Article  CAS  Google Scholar 

  27. Xu, J., Wang, D.X., and Fan, L.L., Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template, Organ. Electron., 2015, vol. 26, p. 292.

    Article  CAS  Google Scholar 

  28. Zang, L.M., Liu, Q.F., and Qiu, J.H., Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel, ACS Appl. Mater. Int., 2017, vol. 39, p. 33941.

    Article  CAS  Google Scholar 

  29. Meng, F. and Ding, Y., Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities, Adv. Mater., 2011, vol. 23, p. 4098.

    Article  CAS  PubMed  Google Scholar 

  30. Fan, Z.J., Yan, J., and Wei, T., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater., 2011, vol. 21, p. 2366.

    Article  CAS  Google Scholar 

  31. Zhang, L. and Shi, G.Q., Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability, J. Phys. Chem. C, 2011, vol. 115, p. 17206.

    Article  CAS  Google Scholar 

  32. Zhou, W., Han, G.Y., and Xiao, Y.M., Polypyrrole doped with dodecyl benzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance, Electrochim. Acta, 2015, vol. 176, p. 594.

    Article  CAS  Google Scholar 

  33. Hwang, Y.T., Kang, S.Y., and Kim, D.H., The influence of consolidation temperature on in-plane and interlaminar mechanical properties of self-reinforced polypropylene composite, Compos. Struct., 2018, vol. 11, p. 098.

  34. Miao, W.J., Wang, Z.B., and Li, Z.L., Epitaxial crystallization of precisely chlorine-substituted polyethylene induced by carbon nanotube and graphene, Polymer, 2016, vol. 94, p. 53.

    Article  CAS  Google Scholar 

  35. Yang, C., Zhang, L.L., and Hu, N.T., Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density, J. Power Sources, 2016, vol. 302, p. 39.

    Article  CAS  Google Scholar 

  36. Liu, X., Qian, T., and Xu, N., Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites, Carbon, 2015, vol. 92, p. 348.

    Article  CAS  Google Scholar 

  37. Zhou, H.H., Han, G.Y., and Xiao, Y.M., Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors, J. Power Sources, 2014, vol. 263, p. 259.

    Article  CAS  Google Scholar 

  38. Tabaciarova, J., Micusik, M., Fedorko, P., and Omastova, M., Study of polypyrrole aging by XPS, FTIR and conductivity measurements, Polym. Degrad. Stab., 2015, vol. 120, p. 392.

    Article  CAS  Google Scholar 

  39. Zhou, W., Han, G.Y., and Xiao, Y.M., Polypyrrole doped with dodecylbenzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance, Electrochim. Acta, 2015, vol. 176, p. 594.

    Article  CAS  Google Scholar 

  40. Jin, M., Han, G.Y., and Chang, Y.Z., Flexible electrodes based on polypyrrole/manganese dioxide/polypropylene fibrous membrane composite for supercapacitor, Electrochim. Acta, 2011, vol. 56, p. 9838.

    Article  CAS  Google Scholar 

  41. Wang, N., Han, G.Y., and Xiao, Y.M., Polypyrrole/graphene oxide deposited on two metalized surfaces of porous polypropylene films as all-in-one flexible supercapacitors, Electrochim. Acta, 2018, vol. 270, p. 490.

    Article  CAS  Google Scholar 

  42. Wang, S.L., Liu, N.S., and Su, J., Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs, ACS Nano, 2017, vol. 11, p. 2066.

    Article  CAS  PubMed  Google Scholar 

  43. Sun, J.F., Huang, Y., and Fu, C.X., High performance stretchable yarn supercapacitor based on PPy@CNT@surethane elastic fiber core spun yarn, Nano Energy, 2016, vol. 27, p. 230.

    Article  CAS  Google Scholar 

  44. Wei, C.Z., Xu, Q., and Chen, Z.Q., An all solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes, Carbohydr. Polym., 2017, vol. 169, p. 50.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, Q.C., Liu, K., and Zhou, J.Q., Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment, Chem. Eng. J., 2017, vol. 321, p. 554.

    Article  CAS  Google Scholar 

  46. Wei, H.G., Zhu, J.H., and Wu, S.J., Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage, Polymer, 2013, vol. 54, p. 1820.

    Article  CAS  Google Scholar 

  47. Sun, J.F., Huang, Y., and Fu, C.X., High performance stretchable yarn supercapacitor based on PPy@CNT@surethane elastic fiber core spun yarn, Nano Energy, 2016, vol. 27, p. 230.

    Article  CAS  Google Scholar 

  48. Yuan, W., Han, G.Y., and Xiao, Y.M., Flexible electrochemical capacitors based on polypyrrole/carbon fibers via chemical polymerization of pyrrole vapor, Appl. Surf. Sci., 2016, vol. 377, p. 274.

    Article  CAS  Google Scholar 

  49. Dong, L.B., Xu, C.J., and Li, Y., Breathable and wearable energy storage based on highly flexible paper electrodes, Adv. Mater., 2016, vol. 28, p. 9313.

    Article  CAS  PubMed  Google Scholar 

  50. Deepa, M., Agnihotry, S.A., Gupta, D., and Chandra, R., Ion-pairing effects and ion-solvent-polymer interactions in LiN(CFSO)-PC-PMMA electrolytes: a FTIR study, Electrochim. Acta, 2004, vol. 49, p. 373.

    Article  CAS  Google Scholar 

  51. Rakhi, R.B., Chen, W., Cha, D., and Alshareef, H.N., Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance, Nano Lett., 2012, vol. 12, p. 2559.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the National Natural Science Foundation of China (21574076, U1510121, 21501113, 61804091, 21602127 and 61504076) and the Fund for Shanxi “1331 Project” Key Innovative Research Team (TD701704) and Engineering Research Center (PT201807). And we are also grateful for the test platform provided by Shanxi University of Scientific Instrument Center.

Author information

Authors and Affiliations

Authors

Contributions

Chang Y and Shi W directed and designed the project; Shi W performed the experiments; Shi W wrote the paper with support from Chang Y and Han G. All authors contributed to the general discussion.

Corresponding author

Correspondence to G. Y. Han.

Ethics declarations

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y.Z., Shi, W.H., Han, G.Y. et al. Fabrication on the Flexible Supercapacitor Based on the Polypyrrole Deposited on Polyethylene/Polypropylene Non-Woven Film. Russ J Electrochem 56, 947–958 (2020). https://doi.org/10.1134/S1023193520060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520060038

Keywords:

Navigation