Skip to main content
Log in

Molecular Mechanisms of Spinocerebellar Ataxia Type 1

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Polyglutamine (polyQ) disorders are severe forms of inherited neurodegenerative pathologies caused by the expansion of CAG repeats in specific genes accompanied by abnormal elongation of the polyglutamic residues in the mutant part of the protein, impaired protein-protein interactions, and formation of insoluble amyloid inclusions in neurons. Therapy for these diseases is only symptomatic, and it cannot affect the dynamics of the pathological process. To date, nine polyQ diseases are known: spinocerebellar ataxia type 1, 2, 3, 6, 7, and 17, spino-bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and Huntington’s disease. Expansion of trinucleotide repeats can take place during processes of replication, transcription and reparation, though the exact mechanisms are still unclear. There are many ways for CAG expansion resulting in neurodegeneration. Nearly complete penetrance of mutant alleles, severe disabilities after 10–15 years from the disease onset, and lack of effective therapy contribute to consideration of polyQ disorders as a very significant problem actively investigated worldwide. This review is focused on the existing models and molecular mechanisms of spinocerebellar ataxia type 1 (SCA1), one of the polyglutamine disorders, which is caused by expansion of CAG repeats in the ATXN1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Illarioshkin, S.N., Rudenskaya, G.E., Ivanova-Smolenskaya, I.A., et al., Nasledstvennye ataksii i paraplegii (Hereditary Ataxia and Paraplegia), Moscow: MEDpress-Inform, 2006.

  2. Stoyas, C. and La Spada, A., The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology, Handb. Clin. Neurol., 2018, vol. 147, pp. 143—170https://doi.org/10.1016/B978-0-444-63233-3.00011-7

    Article  PubMed  Google Scholar 

  3. Katsuno, M., Tanaka, F., Adachi, H., et al., Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA), Prog. Neurobiol., 2012, vol. 99, no. 3, pp. 246—256. https://doi.org/10.1016/j.pneurobio.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  4. Ha, A.D. and Fung, V.S., Huntington’s disease, Curr. Opin. Neurol., 2012, vol. 25, no. 4, pp. 491—498. https://doi.org/10.1097/WCO.0b013e3283550c97

    Article  PubMed  Google Scholar 

  5. Storey, E., Genetic cerebellar ataxias, Semin. Neurol., 2014, vol. 34, no. 3, pp. 280—292. https://doi.org/10.1055/s-0034-1386766

    Article  PubMed  Google Scholar 

  6. Stevanin, G. and Brice, A., Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4), Cerebellum, 2008, vol. 7, no. 2, pp. 170—178. https://doi.org/10.1007/s12311-008-0016-1

    Article  CAS  PubMed  Google Scholar 

  7. Zoghbi, H.Y. and Orr, H.T., Glutamine repeats and neurodegeneration, Annu. Rev. Neurosci., 2000, vol. 23, pp. 217—247. https://doi.org/10.1146/annurev.neuro.23.1.217

    Article  CAS  PubMed  Google Scholar 

  8. Sun, Y.M., Zhang, Y.B., and Wu, Z.Y., Huntington’s disease: relationship between phenotype and genotype, Mol. Neurobiol., 2017, vol. 54, no. 1, pp. 342—348. https://doi.org/10.1007/s12035-015-9662-8

    Article  CAS  PubMed  Google Scholar 

  9. Schut, J., Hereditary ataxia: clinical study through six generations, Arch.NeurPsych., 1950, vol. 63, pp. 535—568.

    Article  Google Scholar 

  10. Koneva, L.A., Kucher, A.N., Puzyrev, V.P., et al., Demographic and clinical-genetic features of the type I spinocerebellar ataxia prevalence among the Ust-Aldan and Aby Uluses in the Republic of Sakha (Yakutia), Aktual’nye voprosy profilakticheskoi meditsiny (Current Issues in Preventive Medicine) (Proc. Theor. Pract. Cof.), Ulan-Ude, 2005, pp. 97—100.

    Google Scholar 

  11. Banfi, S., Servadio, A., Chung, M., et al., Identification and characterization of the gene causing type 1 spinocerebellar ataxia, Nat. Genet., 1994, vol. 7, pp. 513—520. https://doi.org/10.1038/ng0894-513

    Article  CAS  PubMed  Google Scholar 

  12. Opal, P. and Ashizawa, T., Spinocerebellar ataxia type 1, GeneReviews (Internet), 1998.

    Google Scholar 

  13. Kraus-Perrotta, C. and Lagalwar, S., Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1, Cerebellum Ataxias, 2016, vol. 3, p. 20. https://doi.org/10.1186/s40673-016-0058-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pearson, C., Eichler, E., Lorenzetti, D., et al., Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation, Biochemistry, 1998, vol. 37, no. 8, pp. 2701—2708. https://doi.org/10.1021/bi972546c

    Article  CAS  PubMed  Google Scholar 

  15. Matilla-Dueñas, A., Goold, R., and Giunti, P., Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1, Cerebellum, 2008, pp. 106—114. https://doi.org/10.1007/s12311-008-0009-0

    Article  Google Scholar 

  16. Seidel, K., Siswanto, S., Ewout, R., et al., Brain pathology of spinocerebellar ataxias, Acta Neuropathol., 2012, vol. 124, pp. 1—21. https://doi.org/10.1007/s00401-012-1000-x

    Article  CAS  PubMed  Google Scholar 

  17. Biirk, K., Abele, M., Fetter, M., et al., Autosomal dominant cerebellar ataxia type I: clinical features and MRI in families with SCA1, SCA2 and SCA3, Brain, 1996, vol. 119, pp. 1497—1505. https://doi.org/10.1093/brain/119.5.1497

    Article  Google Scholar 

  18. Rüb, U., Bürk, K., Timmann, D., et al., Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinico-pathological insights, Neuropathol. Appl. Neurobiol., 2012, vol. 38, pp. 665—680. https://doi.org/10.1111/j.1365-2990.2012.01259.x

    Article  PubMed  Google Scholar 

  19. Guerrini, L., Lolli, F., Ginestroni, A., et al., Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2: a quantitative volumetric, diffusion and proton spectroscopy MR study, Brain, 2004, vol. 127, pp. 1785—1795. https://doi.org/10.1093/brain/awh201

    Article  CAS  PubMed  Google Scholar 

  20. Adanyeguh, I., Henry, P., Nguyen, T. et al., In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3 and 7, Mov. Disord., 2015, vol. 30, no. 5, pp. 662—670. https://doi.org/10.1002/mds.26181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burright, E., Clark, H., Servadio, A., et al., SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat, Cell, 1995, vol. 82, pp. 937—948. https://doi.org/10.1016/0092-8674(95)90273-2

    Article  CAS  PubMed  Google Scholar 

  22. Matilla, A., Roberson, D., Banfi, S., et al., Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation, J. Neurosci., 1998, vol. 18, pp. 5508—5516. https://doi.org/10.1523/JNEUROSCI.18-14-05508.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watase, K., Weeber, E., Xu, B., et al., A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration, Neuron, 2002, vol. 34, pp. 905—919. https://doi.org/10.1016/S0896-6273(02)00733-X

    Article  CAS  PubMed  Google Scholar 

  24. Lorenzetti, D., Watase, K., Xu, B., et al., Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus, Hum. Mol. Genet., 2000, vol. 9, pp. 779—785. https://doi.org/10.1093/hmg/9.5.779

    Article  CAS  PubMed  Google Scholar 

  25. Zu, T., Duvick, L., Kaytor, M., et al., Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice, J. Neurosci., 2004, vol. 24, pp. 8853—8861. https://doi.org/10.1523/JNEUROSCI.2978-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giovannoni, R., Maggio, N., Rosaria-Bianco, M., et al., Reactive astrocytosis and glial glutamate transporter clustering are early changes in a spinocerebellar ataxia type 1 transgenic mouse model, Neuron Glia Biol., 2007, vol. 3, no. 4, pp. 335—351. https://doi.org/10.1017/S1740925X08000185

    Article  PubMed  Google Scholar 

  27. Ingram, M., Orr, H., and Clark, H., Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias, Brain Res. Bull., 2012, vol. 88, no. 1, pp. 33—42. https://doi.org/10.1016/j.brainresbull.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  28. Emamian, E.S., Kaytor, M.D., Duvick, L.A., et al., Serine 776 of ataxin-1 is critical for polyglutamine induced disease in SCA1 transgenic mice, Neuron, 2003, vol. 38, pp. 375—387. https://doi.org/10.1016/S0896-6273(03)00258-7

    Article  CAS  PubMed  Google Scholar 

  29. Duvick, L., Barnes, J., Ebner, B., et al., SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776, Neuron, 2010, vol. 67, pp. 929—935. https://doi.org/10.1016/j.neuron.2010.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandez-Funez, P., Nino-Rosales, M.L., de Gouyon, B., et al., Identification of genes that modify ataxin-1-induced neurodegeneration, Nature, 2000, vol. 408, no. 6808, pp. 101—106. https://doi.org/10.1038/35040584

    Article  CAS  PubMed  Google Scholar 

  31. Bondar, V.V., Adamski, C.J., Onur, T.S., et al., PAK1 regulates ATXN1 levels providing an opportunity to modify its toxicity in spinocerebellar ataxia type 1, Hum. Mol. Genet., 2018, vol. 27, no. 16, pp. 2863—2873. https://doi.org/10.1093/hmg/ddy200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barclay, S.S., Tamura, T., Ito, H., et al., Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1, Hum. Mol. Genet., 2014, vol. 23, no. 5, pp. 1345—1364. https://doi.org/10.1093/hmg/ddt524

    Article  CAS  PubMed  Google Scholar 

  33. Skinner, P.J., Koshy, B.T., Cummings, C.J., et al., Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures, Nature, 1997, vol. 391, no. 6664, pp. 307—307. https://doi.org/10.1038/34701

    Article  Google Scholar 

  34. Krol, H.A., Krawczyk, P.M., Bosch, K.S., et al., Polyglutamine expansion accelerates the dynamics of ataxin-1 and does not result in aggregate formation, PLoS One, 2008, vol. 3, no. 1. e1503. https://doi.org/10.1371/journal.pone.0001503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mapelli, L., Canale, C., Pesci, D., et al., Toxic effects of expanded ataxin-1 involve mechanical instability of the nuclear membrane, Biochim. Biophys. Acta,Mol. Basis Dis., 2012, vol. 1822, no. 6, pp. 906—917. https://doi.org/10.1016/j.bbadis.2012.01.016

    Article  CAS  Google Scholar 

  36. Lee, Y., Samaco, R.C., Gatchel, J.R., et al., miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis, Nat. Neurosci., 2008, vol. 11, no. 10, pp. 1137—1139. https://doi.org/10.1038/nn.2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frattini, A., Fabbri, M., Valli, R., et al., High variability of genomic instability and gene expression profiling in different HeLa clones, Sci. Rep., 2015, vol. 5, no. 1. https://doi.org/10.1038/srep15377

  38. Lin, Y.-C., Boone, M., Meuris, L., et al., Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations, Nat. Comm., 2014, vol. 1. https://doi.org/10.1038/ncomms5767

  39. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, no. 4, pp. 663—676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  40. Muguruma, K., Nishiyama, A., Kawakami, H., et al., Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells, Cell Rep., 2015, vol. 10, no. 4, pp. 537—550. https://doi.org/10.1016/j.celre.2014.12.051

  41. Qian, X., Jacob, F., Song, M.M., et al., Generation of human brain region-specific organoids using a miniaturized spinning bioreactor, Nat. Protoc., 2018, vol. 13, no. 3, pp. 565—580. https://doi.org/10.1038/nprot.2017.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gorris, R., Fischer, J., Erwes, K.L., et al., Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes, Glia, 2015, vol. 63, no. 12, pp. 2152—2167. https://doi.org/10.1002/glia.22882

    Article  PubMed  Google Scholar 

  43. Douvaras, P., Sun, B., Wang, M., et al., Directed differentiation of human pluripotent stem cells to microglia, Stem Cell Rep., 2017, vol. 8, no. 6, pp. 1516—1524. https://doi.org/10.1016/j.stemcr.2017.04.023

    Article  CAS  Google Scholar 

  44. Lebedeva, O.S., Surdina, A.V., Bogomiakova, M.E., et al., IPSC-based model for the study of molecular mechanisms of spinocerebellar ataxia type 1, FEBS J., 2017, vol. 284, suppl. 1, p. 141.

    Google Scholar 

  45. Rousseaux, M.W.C., Tschumperlin, T., Lu, H.-C., et al., ATXN1-CIC complex is the primary driver of cerebellar pathology in spinocerebellar ataxia type 1 through a gain-of-function mechanism, Neuron, 2018, vol. 97, no. 6, pp. 1235—1243. https://doi.org/10.1016/j.neuron.2018.02.013 45a. Bogomazova, A.N., Vasina, E.M., Kiselev, S.L., et al., Genetic cell reprogramming: a new technology for basic research and applied usage, Russ. J. Genet., 2015, vol. 51, no. 4, pp. 386—396. https://doi.org/10.1134/S102279541504002X

  46. Serra, H.G., Byam, C.E., Lande, J.D., et al., Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice, Hum. Mol. Genet., 2004, vol. 13, no. 20, pp. 2535—2543. https://doi.org/10.1093/hmg/ddh268

    Article  CAS  PubMed  Google Scholar 

  47. Notartomaso, S., Zapulla, C., Biagioni, F., et al., Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1, Mol. Brain, 2013, vol. 6, no. 48. https://doi.org/10.1186/1756-6606-6-48

    Article  Google Scholar 

  48. Power, E.M., Morales, A., and Empson, R.M., Prolonged type 1 metabotropic glutamate receptor dependent synaptic signaling contributes to spino-cerebellar ataxia type 1, J. Neurosci., 2016, vol. 36, no. 18, pp. 4910—4916. https://doi.org/10.1523/jneurosci.3953-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shuvaev, A.N., Hosoi, N., Sato, Y., et al., Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice, J. Physiol., 2016, vol. 595, no. 1, pp. 141—164. https://doi.org/10.1113/jp272950

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oz, G., Kittelson, E., Demirgöz, D., et al., Assessing recovery from neurodegeneration in spinocerebellar ataxia: 1. Comparison of in vivo magnetic resonance spectroscopy with motor testing, gene expression and histology, Neurobiol. Dis., 2015, vol. 74, pp. 158—166. https://doi.org/10.1016/j.nbd.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  51. Hourez, R., Servais, L., Orduz, D., et al., Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1, J. Neurosci., 2011, vol. 31, no. 33, pp. 11795—11807. https://doi.org/10.1523/jneurosci.0905-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cvetanovic, M., Hu, Y.-S., and Opal, P., Mutant ataxin-1 inhibits neural progenitor cell proliferation in SCA1, Cerebellum, 2017, vol. 16, no. 2, pp. 340—347. https://doi.org/10.1007/s12311-016-0794-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cvetanovic, M., Decreased expression of glutamate transporter GLAST in Bergmann glia is associated with the loss of Purkinje neurons in the spinocerebellar ataxia type 1, Cerebellum, 2014, vol. 14, no. 1, pp. 8—11. https://doi.org/10.1007/s12311-014-0605-0

    Article  CAS  Google Scholar 

  54. Ito, H., Fujita, K., Tagawa, K., et al., HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice, EMBO Mol. Med., 2014, vol. 7, no. 1, pp. 78—101. https://doi.org/10.15252/emmm.201404392

    Article  CAS  PubMed Central  Google Scholar 

  55. Taniguchi, J.B., Kondo, K., Fujita, K., et al., RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhances DNA damage repair, Hum. Mol. Genet., 2016, vol. 25, no. 20, pp. 4432—4447. https://doi.org/10.1093/hmg/ddw272

    Article  CAS  PubMed  Google Scholar 

  56. Qi, M.-L., Tagawa, K., Enokido, Y., et al., Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol., 2007, vol. 9, no. 4, pp. 402—414. https://doi.org/10.1038/ncb1553

    Article  CAS  PubMed  Google Scholar 

  57. Ryu, J. and Lee, D.H., Dual-specificity phosphatase 18 modulates the SUMOylation and aggregation of ataxin-1, Biochem. Biophys. Res. Commun., 2018, vol. 502, no. 3, pp. 389—396. https://doi.org/10.1016/j.bbrc.2018.05.178

    Article  CAS  PubMed  Google Scholar 

  58. Cvetanovic, M., Ingram, M., Orr, H., and Opal, P., Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1, Neuroscience, 2015, vol. 289, pp. 289—299. https://doi.org/10.1016/j.neuroscience.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Lebron, E., Liu, G., Keiser, M., et al., Altered Purkinje cell miRNA expression and SCA1 pathogenesis, Neurobiol. Dis., 2013, vol. 54, pp. 456—463. https://doi.org/10.1016/j.nbd.2013.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cummings, C.J., Reinstein, E., Sun, Y., et al., Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice, Neuron, 1999, vol. 24, no. 4, pp. 879—892. https://doi.org/10.1016/s0896-6273(00)81035-1

    Article  CAS  PubMed  Google Scholar 

  61. Stenoien, D.L., Mielke, M., and Mancini, M.A., Intranuclear ataxin1 inclusions contain both fast- and slow-exchanging components, Nat. Cell Biol., 2002, vol. 4, no. 10, pp. 806—810. https://doi.org/10.1038/ncb859

    Article  CAS  PubMed  Google Scholar 

  62. Cummings, C.J., Mancini, M.A., Antalffy, B., et al., Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1, Nat. Genet., 1998, vol. 19, no. 2, pp. 148—154. https://doi.org/10.1038/502

    Article  CAS  PubMed  Google Scholar 

  63. Vig, P., Hearst, S., Shao, Q., et al., Glial S100B protein modulates mutant ataxin-1 aggregation and toxicity: TRTK12 peptide, a potential candidate for SCA1 therapy, Cerebellum, 2011, vol. 10, no. 2, pp. 254—266. https://doi.org/10.1007/s12311-011-0262-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Serra, H.G., Duvick, L., Zu, T., et al., RORα-mediated Purkinje cell development determines disease severity in adult SCA1 mice, Cell, 2006, vol. 127, no. 4, pp. 697—708. https://doi.org/10.1016/j.cell.2006.09.036

    Article  CAS  PubMed  Google Scholar 

  65. Tsuda, H., Jafar-Nejad, H., Patel, A.J., et al., The AXH domain of ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/senseless proteins, Cell, 2005, vol. 122, no. 4, pp. 633—644. https://doi.org/10.1016/j.cell.2005.06.012

    Article  CAS  PubMed  Google Scholar 

  66. Mizutani, A., Wang, L., Rajan, H., et al., Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1, EMBO J., 2005, vol. 24, no. 18, pp. 3339—3351. https://doi.org/10.1038/sj.emboj.7600785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yue, S., Serra, S., Zoghbi, H., and Orr, H., The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract, Hum. Mol. Genet., 2001, vol. 10, no. 1, pp. 25—30. https://doi.org/10.1093/hmg/10.1.25

    Article  CAS  PubMed  Google Scholar 

  68. De Chiara, C., Menon, R.P., Dal Piaz, F., et al., Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein, J. Mol. Biol., 2005, vol. 354, no. 4, pp. 883—893. https://doi.org/10.1016/j.jmb.2005.09.083

    Article  CAS  PubMed  Google Scholar 

  69. Irwin, S., Vandelft, M., Pinchev, D., et al., RNA association and nucleocytoplasmic shuttling by ataxin-1, J. Cell Sci., 2005, vol. 118, no. 1, pp. 233—242. https://doi.org/10.1242/jcs.01611

    Article  CAS  PubMed  Google Scholar 

  70. Lam, Y.C., Bowman, A.B., Jafar-Nejad, P., et al., ATAXIN-1 interacts with the repressor capicua in its native complex to cause SCA1 neuropathology, Cell, 2006, vol. 127, no. 7, pp. 1335—1347. https://doi.org/10.1016/j.cell.2006.11.038

    Article  CAS  PubMed  Google Scholar 

  71. Crespo-Barreto, J., Fryer, J.D., Shaw, C.A., et al., Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis, PLoS Genet., 2010, vol. 6, no. 7. e1001021. https://doi.org/10.1371/journal.pgen.1001021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sánchez, I., Balagué, E., and Matilla-Dueñas, A., Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in spinocerebellar ataxia type 1 (SCA1), Hum. Mol. Genet., 2016, vol. 25, no. 18, pp. 4021—4040. https://doi.org/10.1093/hmg/ddw242

    Article  CAS  PubMed  Google Scholar 

  73. Davidson, J.D., Riley, B., Burright, E.N., et al., Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein, Hum. Mol. Genet., 2000, vol. 9, no. 15, pp. 2305—2312. https://doi.org/10.1093/oxfordjournals.hmg.a018922

    Article  CAS  PubMed  Google Scholar 

  74. Okazawa, H., Rich, T., Chang, A., et al., Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death, Neuron, 2002, vol. 34, no. 5, pp. 701—713.https://doi.org/10.1016/s0896-6273(02)00697-9

    Article  CAS  Google Scholar 

  75. Hong, S., Kim, S.-J., Ka, S., et al., USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1 gene product, Mol. Cell. Neurosci., 2002, vol. 20, no. 2, pp. 298—306. https://doi.org/10.1006/mcne.2002.1103

    Article  CAS  PubMed  Google Scholar 

  76. Goold, R., Hubank, M., Hunt, A., et al., Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1, Hum. Mol. Genet., 2007, vol. 16, no. 17, pp. 2122—2134. https://doi.org/10.1093/hmg/ddm162

    Article  CAS  PubMed  Google Scholar 

  77. Tong, X., Gui, H., Jin, F., et al., Ataxin-1 and brother of ataxin-1 are components of the notch signalling pathway, EMBO Rep., 2011, vol. 12, no. 5, pp. 428—435. https://doi.org/10.1038/embor.2011.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klement, I.A., Skinner, P.J., Kaytor, M.D., et al., Ataxin-1 nuclear localization and aggregation, Cell, 1998, vol. 95, no. 1, pp. 41—53. https://doi.org/10.1016/s0092-8674(00)81781-x

    Article  CAS  PubMed  Google Scholar 

  79. Bañez-Coronel, M., Ayhan, F., Tarabochia, A.D., et al., RAN translation in Huntington disease, Neuron, 2015, vol. 88, pp. 667—677. https://doi.org/10.1016/j.neuron.2015.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zu, T., Gibbens, B., Doty, N.S., et al., Non-ATG-initiated translation directed by microsatellite expansions, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 108, no. 1, pp. 260—265. https://doi.org/10.1073/pnas.1013343108

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luján, R., Nusser, Z., Roberts, J.D.B., et al., Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus, Eur. J. Neurosci., 1996, vol. 8, no. 7, pp. 1488—1500. https://doi.org/10.1111/j.1460-9568.1996.tb01611.x

    Article  PubMed  Google Scholar 

  82. Lehre, K.P. and Danbolt, N.C., The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain, J. Neurosci., 1998, vol. 18, pp. 8751—8757. https://doi.org/10.1523/JNEUROSCI.18-21-08751.1998

    Article  CAS  Google Scholar 

  83. Rothstein, J.D., Martin, L., Levey, A.I., et al., Localization of neuronal and glial glutamate transporters, Neuron, 1994, vol. 13, pp. 713—725. https://doi.org/10.1016/0896-6273(94)90038-8

    Article  CAS  PubMed  Google Scholar 

  84. Tanaka, J., Ichikawa, R., Watanabe, M., et al., Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses, NeuroReport, 1997, vol. 8, no. 11, pp. 2461—2464. https://doi.org/10.1097/00001756-199707280-00010

    Article  CAS  PubMed  Google Scholar 

  85. Furuta, A., Martin, L., Lin, C., et al., Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4, Neuroscience, 1997, vol. 81, no. 4, pp. 1031—1042. https://doi.org/10.1016/s0306-4522(97)00252-2

    Article  CAS  PubMed  Google Scholar 

  86. Havel, L.S., Li, S., and Li, X., Nuclear accumulation of polyglutamine disease proteins and neuropathology, Mol. Brain, 2009, vol. 2, no. 21. https://doi.org/10.1186/1756-6606-2-21

    Article  Google Scholar 

  87. Nekrasov, E.D., Vigont, V.A., Klyushnikov, S.A., et al., Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons, Mol. Neurodegener., 2016, vol. 11, no. 1. https://doi.org/10.1186/s13024-016-0092-5

  88. Gasset-Rosa, F., Chillon-Marinas, C., Goginashvili, A., et al., Polyglutamine-expanded Huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport, Neuron, 2017, vol. 94, no. 1, pp. 48—57. https://doi.org/10.1016/j.neuron.2017.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Monoi, H., Futaki, S., Kugimiya, S., et al., Poly-l-glutamine forms cation channels: relevance to the pathogenesis of the polyglutamine diseases, Biophys. J., 2000, vol. 78, no. 6, pp. 2892—2899. https://doi.org/10.1016/s0006-3495(00)76830-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hirakura, Y., Azimov, R., Azimova, R., and Kagan, B.L., Polyglutamine-induced ion channels: a possible mechanism for the neurotoxicity of Huntington and other CAG repeat diseases, J. Neurosci. Res., 2000, vol. 60, no. 4, pp. 490—494. https://doi.org/10.1002/(SICI)1097-4547(20000515)60:4<490::AID-JNR7>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  91. Cvetanovic, M., Patel, J.M., Marti, H.H., et al., Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1, Nat. Med., 2011, vol. 17, no. 11, pp. 1445—1447. https://doi.org/10.1038/nm.2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Persengiev, S., Kondova, I., Otting, N., et al., Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis, Neurobiol. Aging, 2011, vol. 32, no. 12, pp. 17—27. https://doi.org/10.1016/j.neurobiolaging.2010.03.014

    Article  CAS  Google Scholar 

Download references

Funding

The present study was supported by the Russian Science Foundation (project no. 19-15-00425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lagarkova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovikov, E.A., Davidenko, A.V. & Lagarkova, M.A. Molecular Mechanisms of Spinocerebellar Ataxia Type 1. Russ J Genet 56, 129–141 (2020). https://doi.org/10.1134/S102279542002012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542002012X

Keywords:

Navigation