Skip to main content
Log in

Determining role of hydrogen bonding in electrically driven membrane transport: Quantum-chemical and molecular dynamics study

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

By quantum chemistry and molecular dynamics analysis of the structure and chemical bond energy of the hydrated ion pair in a sulfonated cation exchange membrane, hydrogen bonding has been shown to play the determining role in electrically driven membrane transport in systems of this kind. The characteristics of hydrogen bridges linking hydrate water molecules in the sulfonated cation exchange membrane have been studied using the molecular dynamics method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Tovbin and N. F. Vasyutkin, Zh. Fiz. Khim. 67, 524 (1993).

    CAS  Google Scholar 

  2. G. Zundel, Hydration and Iintermolecular Interaction: Infrared Investigation with Polyelectrolyte Membranes (New York, Academic, 1969).

    Google Scholar 

  3. V. L. Bogatyrev, G. S. Yur’ev, and V. S. Yakhin, X-ray Diffraction Analysis of Ion Exchangers (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  4. N. F. Vasyutkin, I. K. Vorontsova, I. D. Mikheikin, and Yu. K. Tovbin, Zh. Fiz. Khim. 66, 1302 (1992).

    CAS  Google Scholar 

  5. E. V. Butyrskaya, V. A. Shaposhnik, and V. K. Timoshenko, Khim. Tekhnol. Vody 13, 1079 (1991).

    CAS  Google Scholar 

  6. Yu. K. Tovbin, Yu. A. D’yakov, and N. F. Vasyutkin, Zh. Fiz. Khim. 67, 2122 (1993).

    CAS  Google Scholar 

  7. Yu. A. D’yakov and Yu. K. Tovbin, Izv. Akad. Nauk, Ser. Khim., No. 7, 1233 (1995).

    Google Scholar 

  8. S. Quezado, J. C. T. Kwak, and M. Falk, Can. J. Chem. 62, 958 (1984).

    Article  CAS  Google Scholar 

  9. V. I. Volkov, E. A. Siderenkova, S. A. Korochkova, et al., Zh. Fiz. Khim. 68, 309 (1994).

    CAS  Google Scholar 

  10. K. A. Mauritz, JMS—Rev. Macromol. Chem. Phys. C28, 65 (1988).

    Article  CAS  Google Scholar 

  11. E. V. Butyrskaya and V. A. Shaposhnik, J. Struct. Chem. 44, 1062 (2003).

    Article  CAS  Google Scholar 

  12. E. V. Butyrskaya and V. A. Shaposhnik, Khim. Tekhnol. Vody 19, 122 (1997).

    CAS  Google Scholar 

  13. E. V. Butyrskaya, A. N. Maslii, An. M. Kuznetsov, and V. A. Shaposhnik, Sorb. Khromatogr. Process. 1, 25 (2001).

    Google Scholar 

  14. V. A. Shaposhnik and E. V. Butyrskaya, Russ. J. Electrochem. 40, 767 (2004).

    Article  CAS  Google Scholar 

  15. E. V. Butyrskaya, V. A. Shaposhnik, A. M. Butyrskii, et al., J. Anal. Chem. 62, 930 (2007).

    Article  CAS  Google Scholar 

  16. V. S. Soldatov, V. M. Zelenkovskii, and T. V. Bez”yazychnaya, Dokl. Nats. Akad. Nauk Belarus 45 (5), 75 (2001).

    CAS  Google Scholar 

  17. V. S. Soldatov, V. M. Zelenkovskii, and T. V. Bez”yazychnaya, Sorb. Khromatogr. Process. 1, 719 (2001).

    Google Scholar 

  18. E. V. Butyrskaya, V. A. Shaposhnik, Opt. Spectrosc. 92, 370 (2002).

    Article  CAS  Google Scholar 

  19. E. V. Butyrskaya, L. S. Nechaeva, V. A. Shaposhnik, and V. F. Selemenev, J. Anal. Chem. 64, 1000 (2009).

    Article  CAS  Google Scholar 

  20. V. A. Shaposhnik, Kinetics of Electrodialysis (VGU, Voronezh, 1989) [in Russian].

    Google Scholar 

  21. L. A. Gribov, V. I. Baranov, and M. E. Elyashberg, Standardless Molecular Spectral Analysis (Editorial URSS, Moscow, 2002).

    Google Scholar 

  22. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives VCH, Weinheim, 1995.

    Book  Google Scholar 

  23. Yu. K. Tovbin, The method of Molecular Dynamics in Physical Chemistry: Colle3ction of Articles, (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  24. K. V. Shaitan et al., Molecular Dynamic Modeling Package MoDyp. Version 1.13 build 1a MSU MDL, Moscow, 2001).

    Google Scholar 

  25. K. V. Shaitan and K. B. Tereshkina, Molecular Dynamics of Proteins and Peptides (Oikos, Moscow, 2004).

    Google Scholar 

  26. J. B. Foresman, T. A. Keith, K. B. Wiberg, et al., J. Phys. Chem. 100, 16098 (1996).

    Article  CAS  Google Scholar 

  27. M. J. Frish et al., Gaussian 03: Revision C.02 (Gaussian, Pittsburg, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Butyrskaya.

Additional information

Original Russian Text © E.V. Butyrskaya, L.S. Nechaeva, V.A. Shaposhnikov, V.F. Selemenev, 2011, published in Membrany Membrannye Tekhnologii, 2011, Vol. 1, No. 3, pp. 191–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butyrskaya, E.V., Nechaeva, L.S., Shaposhnikov, V.A. et al. Determining role of hydrogen bonding in electrically driven membrane transport: Quantum-chemical and molecular dynamics study. Pet. Chem. 55, 918–926 (2015). https://doi.org/10.1134/S0965544115100047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115100047

Keywords

Navigation