Skip to main content
Log in

Bäcklund transformations for the Jacobi system on an ellipsoid

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a threeaxis ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. J. Jacobi, Vorlesungen über Dynamic, G. Reimer, Berlin (1884).

    Google Scholar 

  2. K. Weierstrass, “Über die geodätischen Linien auf dem dreiaxigen Ellipsoid,” in: Mathematische Werke I, Mayer and Müller, Berlin (1894), pp. 257–266.

    Google Scholar 

  3. M. Toda and M. Wadati, “A canonical transformation for the exponential lattice,” J. Phys. Soc. Japan, 39, 1204–1211 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Wojciechowski, “The analogue of the Bäcklund transformation for integrable many-body systems,” J. Phys. A: Math. Gen., 15, L653–L657 (1982).

    Article  ADS  Google Scholar 

  5. V. Kuznetsov and P. Vanhaecke, “Bäcklund transformations for finite-dimensional integrable systems: A geometric approach,” J. Geom. Phys., 44, 1–40 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progr. Math., Vol. 219), Birkhäuser, Basel (2003).

    Book  MATH  Google Scholar 

  7. A. V. Tsiganov, “Simultaneous separation for the Neumann and Chaplygin systems,” Regul. Chaotic Dyn., 20, 74–93 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential,” J. Geom. Phys., 92, 94–99 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. P. Veselov, “Integrable maps,” Russ. Math. Surveys, 46, 1–51 (1991).

    Article  ADS  MATH  Google Scholar 

  10. Yu. A. Grigor’ev, A. P. Sozonov, and A. V. Tsiganov, “On an integrable system on the plane with velocitydependent potential,” Nelin. Dinam., 12, 355–367 (2016).

    Article  Google Scholar 

  11. A. P. Sozonov and A. V. Tsiganov, “Bäcklund transformations relating different Hamilton–Jacobi equations,” Theor. Math. Phys., 183, 768–781 (2015).

    Article  MATH  Google Scholar 

  12. A. V. Tsiganov, “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems,” Phys. Lett. A, 379, 2903–2907 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. Knörrer, “Geodesics on the ellipsoid,” Invent. Math., 59, 119–143 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Knörrer, “Geodesics on quadrics and a mechanical problem of C. Neumann,” J. Reine Angew. Math., 334, 69–78 (1982).

    MathSciNet  Google Scholar 

  15. J. Moser, “Geometry of quadric and spectral theory,” in: The Chern Symposium 1979 (Proc. Intl. Symp. on Differential Geometry in honor of S.-S. Chern, Berkeley, Calif., June 1979, W.-Y. Hsiang, S. Kobayashi, I. M. Singer, A. Weinstein, J. Wolf, and H.-H. Wu, eds.), Springer, New York (1980), pp. 147–188.

    Chapter  Google Scholar 

  16. A. V. Tsiganov, “Abel’s theorem and Bäcklund transformations for the Hamilton–Jacobi equations,” Proc. Steklov Inst. Math., 295, 243–273 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. H. Abel, “Memoiré sure une propriété générale d’une class tr`es entendue des fonctions transcendantes,” in: Oeuvres complètes, Vol. 1, Imprimerie de Grøndahl and Son, Christiania (1881), pp. 145–211.

    Google Scholar 

  18. M. Green and P. Griffiths, “Abel’s differential equations,” Houston J. Math., 28, 329–351 (2002).

    MathSciNet  MATH  Google Scholar 

  19. H. F. Baker, Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions, Cambridge Univ. Press, Cambridge (1897).

    MATH  Google Scholar 

  20. C. Costello and K. Lauter, “Group law computations on Jacobians of hyperelliptic curves,” in: Selected Areas in Cryptography (Lect. Notes Computer Sci., Vol. 7118, A. Miri and S. Vaudenay, eds.), Springer, Heidelberg (2012), pp. 92–117.

    Chapter  Google Scholar 

  21. V. V. Sokolov, “A new integrable case for the Kirchhoff equation,” Theor. Math. Phys., 129, 1335–1340 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. V. Sokolov and A. V. Tsiganov, “Commutative Poisson subalgebras for Sklyanin brackets and deformations of some known integrable models,” Theor. Math. Phys., 133, 1730–1743 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsiganov.

Additional information

This research was supported by a grant from the Russian Science Foundation (Project No. 15-11-30007).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 192, No. 3, pp. 473–488, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V. Bäcklund transformations for the Jacobi system on an ellipsoid. Theor Math Phys 192, 1350–1364 (2017). https://doi.org/10.1134/S0040577917090069

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917090069

Keywords

Navigation