Skip to main content
Log in

Low-Temperature Decomposition of the (Nb,W)C Carbide Solid Solutions in NbC–WC–Cu Composite Alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—NbC–WC–Cu composite alloys are fabricated at 1300°C by impregnating mixtures of compacted and noncompacted carbide powders with the copper melt under low-frequency (80 Hz) vibration. Under these conditions, carbides are shown to interact with the formation of core (NbC)–shell ((W,Nb)C) solid solution) structures in the copper melt. The formation of a (W,Nb)C solid solution on the surface of NbC particles promotes the wetting of the carbide with copper. The thermal stability of the carbide solid solutions is investigated during isothermal holding at 500 and 1000°C for 60 min and during slow (10 K/min) heating to 1300°C. A reversible decomposition is detected, and the boundaries of low-temperature latent decomposition of the (Nb,W)C solid solutions are determined by the mass ratio of monocarbides NbC : WC in their alloy with copper. The higher the ratio, the lower the (Nb,W)C decomposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Garcia, V. C. Cipres, A. Blomqvist, and B. Kaplan, “Cemented carbide microstructures: a review,” Int. J. Refract. Met. Hard Mater. 80, 40–68 (2019).

  2. I. Konyashin and L. I. Klyachko, “History of cemented carbides in the Soviet Union,” Int. J. Refract. Met. Hard Mater. 49, 9–26 (2015).

  3. I. Konyashin, A. A. Zaitsev, D. Sidorenko, E. A. Levashov, B. Ries, S. N. Konischev, M. Sorokin, A. A. Mazilkin, M. Herrmann, and A. Kaiser, “Wettability of tungsten carbide by liquid binders in WC–Co cemented carbides: is it complete for all carbon contents?” Int. J. Refract. Met. Hard Mater. 62, 134–148 (2017).

  4. P. Montenegro, J. Gomes, R. Rego, and A. Borille, “Potential of niobium carbide application as the hard phase in cutting tool substrate,” Int. J. Refract. Met. Hard Mater. 70, 116–123 (2018).

  5. E. Uhlmann, D. Hinzmann, K. Kropidlowksi, P. Meier, L. Prasol, and M. Woydt, “Substitution of commercially coated tungsten carbide tools in dry cylindrical turning process by HiPIMS coated niobium carbide cutting inserts,” Surf. Coat. Technol. 354, 112–118 (2018).

  6. M. Woydt and H. Mohrbacher, “The use of niobium carbide (NbC) as cutting tools and for wear resistant tribosystems,” Int. J. Refract. Met. Hard Mater. 49, 212–218 (2015).

  7. R. M. Genga, G. Akdogan, J. E. Westraadt, and L. A. Cornish, “Microstructure and material properties of PECS manufactured WC–NbC–Co and WC–TiC–Ni cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 240–248 (2015).

  8. S. G. Huanga, L. Lib, O. Van der Biest, and J. Fleugels, “VC and Cr3C2—doped WC–NbC–Co hardmetals,” J. Alloys Compd. 464, 205–211 (2008).

  9. Boxin Wei, Yujin Wang, Yanwei Zhao, Dong Wang, Guiming Song, Yudong Fu, and Yu Zhou, “Effect of NbC content on microstructure and mechanical properties of W–NbC composites,” Int. J. Refract. Met. Hard Mater. 70, 66–76 (2018).

  10. P. G. Slade, The Vacuum Interrupter. Theory, Design and Application (CRC Press, Boca Raton, 2008).

    Google Scholar 

  11. V. Behrens, T. Honig, and A. Kraus, “Comparisons of different contact materials for low voltage vacuum applications,” in Proceedings of 19th Conference (Nuremberg, 1998), pp. 247–251.

  12. V. Behrens, T. Honig, and A. Kraus, “Tungsten and tungsten carbide based contact materials used in low voltage vacuum contactors,” in Proceedings of 45th IEEE Conference on Electrical Contacts (Pittsburgh, 1999), pp. 105–110.

  13. S. Temborius, M. Lindmayer, and D. Gentsch, “Properties of WC–Ag and WC–Cu for vacuum interrupters,” IEEE Trans. Plasma Sci. 31, 945–952 (2003).

  14. J. L. Cabezas-Villa, L. Olmos, H. J. Vergara-Hernandez, O. Jimenez, P. Garnica, D. Bouvard, and M. Flores, “Constrained sintering and wear properties of Cu–WC composite coatings,” Trans. Nonferrous Met. Soc. China 27, 2214–2224 (2017).

  15. A. Yamamoto, T. Kusano, T. Seki, and T. Okutomi, “Vaporization of carbon from Cu–WC contact during arc discharge in vacuum,” in Proceedings of IEEE 18th International Symposium on Discharges and Electrical Insulation in Vacuum (Eindhoven, 1998), pp. 349–352.

  16. L. E. Bodrova, O. M. Fedorova, A. B. Shubin, and E. A. Pastukhov, “Interaction of niobium and tungsten monocarbides in molten copper,” Russ. Metall. (Metally), No. 3, 204–208 (2017).

  17. L. E. Bodrova and A. B. Shubin, “Formation of a fine-grained structure of NbC in Cu–NbC–WC composite alloys,” Perspekt. Mater., No. 2, 43–50 (2017).

  18. E. A. Popova, L. E. Bodrova, V. P. Chentsov, A. V. Dolmatov, E. A. Pastukhov, L. A. Ovchinnikova, and N. V. Korchemkina, “Wetting of titanium, niobium and chromium carbides by copper melt,” Rasplavy, No. 2, 3–9 (2009).

    Google Scholar 

  19. G. V. Samsonov, G. Sh. Upadhaya, and V. S. Neshpor, Physical Metallurgy of Carbides (Nauk. Dumka, Kiev, 1974).

    Google Scholar 

  20. I. Ignatiev, E. Pastukhov, and L. Bodrova, Method for Alloys Obtaining by Low-Frequency Treatment of Their Melts (LAP LAMBERT Acad. Publ., Saarbrücken, 2013).

  21. H. Holleck, Binary and Ternary Carbide and Nitride Systems of Transition Metals: A Handbook (Metallurgiya, Moscow, 1988).

    Google Scholar 

  22. H. J. Goldschmidt, Interstitial Alloys (Mir, Moscow, 1971).

  23. A. I. Gusev, Nonstoichiometry, Disorder, and Short-Range and Long-Range Orders in Solids (Fizmatlit, Moscow, 2007).

    Google Scholar 

  24. S. V. Rempel, A. A. Rempel, and A. I. Gusev, “Latent decomposition regions in the model of subregular solutions: the ZrC–NbC system,” Russian J. Phys. Chem. A 74 (3), 341–346 (2000).

Download references

ACKNOWLEDGMENTS

The results were obtained using the equipment from the Center for Collective Use Ural-M and Melytec.

We thank Dr. R.I. Gulyaeva for the DSC analysis.

Funding

This work was performed according to a state assignment to the Institute of Metallurgy, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Bodrova.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodrova, L.E., Fedorova, O.M., Mel’chakov, S.Y. et al. Low-Temperature Decomposition of the (Nb,W)C Carbide Solid Solutions in NbC–WC–Cu Composite Alloys. Russ. Metall. 2020, 1335–1342 (2020). https://doi.org/10.1134/S003602952011004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602952011004X

Navigation