Skip to main content
Log in

First-Principles Investigations of Electronic Structures, Mechanical Properties, and Thermodynamic Characteristics of Scandium Carbide Compounds

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Aiming to study the electronic structures, mechanical properties, and thermodynamic characteristics within framework of density function theory for scandium carbide (ScxCy) compounds, first-principles calculations were performed. The calculated cohesive energy and formation enthalpy indicate that the compounds have the thermodynamically stable structures. Their electronic characteristics indicate that ScC, Sc2C, Sc2C3, and Sc3C4 present metallic character but Sc4C3 presents semiconductor character. According to the stress-strain method, the elastic constants were calculated. In a framework of the Voigte-Reusse-Hill approximation, bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (σ), and Vickers hardness (\({{H}_{{v}}}\)) were analyzed. The largest value of B, G, E are found from Sc2C3. Both ScC and Sc2C3 are ductile whereas other compounds are brittle. Mechanical anisotropy analysis indicates that Sc2C3 has the highest anisotropy because its percent anisotropy AG (0.038) is the largest one. Furthermore, the relationship of thermodynamic properties such as specific heat capacity, entropy, Helmholtz free energy and internal energy with temperature were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. X. P. Gao, Y. H. Jiang, R. Zhou, and J. Feng, J. Alloys Compd. 587, 819 (2014).

    Article  CAS  Google Scholar 

  2. X. S. Lv, W. Wei, Q. L. Sun, L. Yu, B. B. Huang, and Y. Dai, ChemPhysChem. 18, 1627 (2017).

    Article  CAS  Google Scholar 

  3. Y. F. Zhang, J. Q. Li, L. X. Zhou, and S. C. Xiang, Solid State Commun. 121, 411 (2002).

    Article  CAS  Google Scholar 

  4. H. G. Ma, J. Wang, H. Y. Zhao, D. B. Zhang, and Y. Liu, Chem. Phys. Lett. 660, 238 (2016).

    Article  CAS  Google Scholar 

  5. J. Maibam, B. I. Sharma, R. Bhattacharjee, R. K. Thapa, and R. K. Brojen Singh, Phys. B (Amsterdam, Neth.) 406, 4041 (2011).

  6. P. Sonia, G. Pagare, and S. P. Sanyal, J. Phys. Chem. Solids 72, 810 (2011).

    Article  Google Scholar 

  7. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  8. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  9. G. Kresse and J. Furthmüller, J. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  10. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  11. O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).

    Article  CAS  Google Scholar 

  12. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1977).

    Article  Google Scholar 

  13. E. A. uarez-Arellano, B. Winkler, S. C. Vogel, A. Senyshyn, D. R. Kammler, and M. Avalos-Borja, J. Alloys Compd. 509, 1 (2011).

  14. H. Rassaerts, H. Nowotny, G. Vinek, and F. Benesovsky, Monatsh. Chem. 98, 460 (1967).

    Article  CAS  Google Scholar 

  15. R. Pöttgen and W. Jeitschko, Inorg. Chem. 30, 427 (1991).

    Article  Google Scholar 

  16. N. H. Krikorian, A. L. Giorgi, E. G. Szklarz, M. C. Krupka, and B. T. Matthias, J. Less Common Met. 19, 253 (1969).

    Article  CAS  Google Scholar 

  17. C. T. Zhou, B. Xiao, J. Feng, J. C. Chen, R. Zhou, J. D. Xing, and Y. F. Li, Phys. B (Amsterdam, Neth.) 404, 1701 (2009).

  18. Y. Liu, Y. C. Huang, Z. B. Xiao, C. Yang, and X. W. Reng, Int. J. Mod. Phys. B. 30, 1650085 (2016).

    Article  CAS  Google Scholar 

  19. W. Zhou, L. J. Liu, B. L. Li, P. Wu, and Q. G. Song, Comput. Mater. Sci. 46, 921 (2009).

    Article  CAS  Google Scholar 

  20. Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

    Article  Google Scholar 

  21. A. Haddou, H. Khachai, R. Khenata, F. Litimein, A. Bouhemadou, G. Murtaza, Z. A. Alahmed, S. B. Omran, and B. Abbar, J. Mater. Sci. 48, 8235 (2013).

    Article  CAS  Google Scholar 

  22. J. Feng, B. Xiao, R. Zhou, W. Pan, and D. R. Clarke, Acta Mater. 60, 3380 (2012).

    Article  CAS  Google Scholar 

  23. Y. Z. Liu, Y. H. Jiang, J. Feng, and R. Zhou, Phys. B (Amsterdam, Neth.) 419, 45 (2013).

  24. Y. Z. Liu, Y. H. Jiang, R. Zhou, and J. Feng, J. Alloys Compd. 582, 500 (2014).

    Article  CAS  Google Scholar 

  25. S. F. Pugh, London, Edinburgh, Dublin Philos. Mag. J.Sci. 45, 823 (1954).

    Article  CAS  Google Scholar 

  26. Z. M. Sun, D. Music, R. Ahuja, and J. M. Schneider, Phys. Rev. B 71, 193402 (2005).

    Article  Google Scholar 

  27. X. Q. Chen, H. Y. Niu, D. Z. Li, and Y. Y. Li, Intermetallics 19, 1275 (2011).

    Article  CAS  Google Scholar 

  28. J. Feng, B. Xiao, C. L. Wan, Z. X. Qu, Z. C. Huang, J. C. Chen, R. Zhou, and W. Pan, Acta Mater. 59, 1742 (2011).

    Article  CAS  Google Scholar 

  29. P. Wachter, M. Filzmoser, and J. Rebizant, Phys. B (Amsterdam, Neth.) 293, 199 (2001).

  30. O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  31. S. Edward, A. Orson, and S. Naohiro, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973).

    Google Scholar 

  32. H. T. Li, Y. Z. Chen, H. Y. Wang, H. Wang, Y. C. Li, I. Harran, Y. Li, and C. S. Guo, J. Alloys Compd. 700, 208 (2017).

    Article  CAS  Google Scholar 

  33. J. Feng, B. Xiao, R. Zhou, W. Pan, and D. R. Clarke, Acta Mater. 60, 3380 (2012).

    Article  CAS  Google Scholar 

  34. G. Surucu, K. Colakoglu, E. Deligoz, and N. Korozlu, J. Electron. Mater. 45, 4256 (2016).

    Article  CAS  Google Scholar 

  35. I. Ansara, N. Dupin, H. L. Lukas, and B. Sundman, J. Alloys Compd. 247, 20 (1997).

    Article  CAS  Google Scholar 

  36. T. W. He, Y. H. Jiang, R. Zhou, and J. Feng, J. Appl. Phys. 118, 075902 (2015).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (no. 51774190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiangjun Liu, Yang, J., Yang, C. et al. First-Principles Investigations of Electronic Structures, Mechanical Properties, and Thermodynamic Characteristics of Scandium Carbide Compounds. Russ. J. Phys. Chem. 95, 29–37 (2021). https://doi.org/10.1134/S0036024421010155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421010155

Keywords:

Navigation