Skip to main content
Log in

Degradation of organic pollutants by air bubbles passing small glass balls in the presence of nanosized ZnO powder

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the present work, a novel method employing air-bubble cavitation (induced by air bubbles passing small glass balls) combined with nanosized ZnO powder acting as an assistant catalyst, was proposed to degrade some organic dyes in aqueous solution. It was shown that the Acid Red B dye as a model organic pollutant can be decomposed effectively by this method. The degradation process can be described by the pseudo-first-order kinetics and the corresponding rate constants were found to be 0.0041 and 0.0017 min–1 for the process based on air-bubble cavitation combined with nanometer ZnO powder and for the air-bubble cavitation alone, respectively. The influence of operating parameters, such as air-bubbling time, initial concentration, gas flow rate and glass ball size on the degradation of Acid Red B was discussed. The degradation of Acid Red B was monitored by UV–Vis spectroscopy and HPLC. The described method was applied to other similar organic dyes. The experimental results prove that the described method is feasible and promising as an advisable choice for treating non- or low-transparent wastewaters contaminated with various dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Talarposhti, T. Donnelly, and G. K. Anderson, Water Res. 35, 425 (2001).

    Article  CAS  Google Scholar 

  2. A. Lopez, G. Ricco, R. Ciannarella, A. Rozzi, et al., Water Sci. Technol. 40, 99 (1999).

    Article  CAS  Google Scholar 

  3. M. S. Lucas, A. A. Dias, A. Sampaio, et al., Water Res. 41, 1103 (2007).

    Article  CAS  Google Scholar 

  4. N. K. Kiliç, J. L. Nielsen, M. Yüce, et al., Chemosphere. 67, 826 (2007).

    Article  Google Scholar 

  5. B. Carlos, J. S. Carla, G. Georg, et al., Ultrason. Sonochem. 14, 355 (2007).

    Article  Google Scholar 

  6. A. Houas, H. Lachheb, M. Ksibi, et al., Appl. Catal. B: Environ. 31, 145 (2001).

    Article  CAS  Google Scholar 

  7. M. Saquib and M. Muneer, Desalination 155, 255 (2003).

    Article  CAS  Google Scholar 

  8. W. Z. Tang and H. An, Chemosphere 31, 4157 (1995).

    Article  CAS  Google Scholar 

  9. V. Meshko, L. Markovska, M. Mincheva, et al., Water Res. 35, 3357 (2001).

    Article  CAS  Google Scholar 

  10. W. S. Kuo and P. H. Ho, Chemosphere 45, 77 (2001).

    Article  CAS  Google Scholar 

  11. K. S. Suslick, Science 247, 1439 (1990).

    Article  CAS  Google Scholar 

  12. Y. T. Didenko, W. B. Mcnamara, and K. S. Suslick, J. Am. Chem. Soc. 121, 5817 (1999).

    Article  CAS  Google Scholar 

  13. W. B. Mcnamara, Y. T. Didenko, and K. S. Suslick, Nature 401, 772 (1999).

    Article  CAS  Google Scholar 

  14. M. A. Margulis, Ultrasonics 23, 157 (1985).

    Article  CAS  Google Scholar 

  15. P. R. Gogate, J. Environ. Manage. 85, 801 (2007).

    Article  CAS  Google Scholar 

  16. P. R. Gogate and A. M. Kabadi, Biochem. Eng. J. 44, 60 (2009).

    Article  CAS  Google Scholar 

  17. A. G. Chakinala, P. R. Gogate, A. E. Burgess, et al., Ultrason. Sonochem. 15, 49 (2008).

    Article  CAS  Google Scholar 

  18. M. N. Patil and A. B. Pandit, Ultrason. Sonochem. 14, 519 (2007).

    Article  CAS  Google Scholar 

  19. T. J. Mason and J. P. Lorimer, Applied Sonochemistry (Wiley-VCH, Weinheim, 2003), Vol. 25.

    Google Scholar 

  20. S. Arrojo and Y. Benito, Ultrason. Sonochem. 15, 203 (2008).

    Article  CAS  Google Scholar 

  21. A. G. Chakinala, P. R. Gogate, R. Chand, et al., Ultrason. Sonochem. 15, 164 (2008).

    Article  CAS  Google Scholar 

  22. R. Xu, R. Z. Jiang, J. Wang, et al., Chem. Eng. J. 164, 23 (2010).

    Article  CAS  Google Scholar 

  23. Z. Zhang, Y. Lv, J. Wang, et al., Acta Sci. Circumstant. 29, 955 (2009).

    CAS  Google Scholar 

  24. J. Wang, Z. Jiang, L. Zhang, et al., Ultrason. Sonochem. 16, 225 (2009).

    Article  Google Scholar 

  25. J. Wang, Z. Jiang, Z. Zhang, et al., Ultrason. Sonochem. 15, 768 (2008).

    Article  CAS  Google Scholar 

  26. S. Sakthivel, B. Neppolian, M. V. Shankar, et al., Sol. Energy Mater. Solar Cells 77, 65 (2003).

    Article  CAS  Google Scholar 

  27. N. Guettai and A. Amar, Desalination 185, 427 (2005).

    Article  CAS  Google Scholar 

  28. L. H. Thompson and L. K. Doraiswamy, Ind. Eng. Chem. Res. 38, 1215 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C.H., Zhang, L.Q., Zhang, H.B. et al. Degradation of organic pollutants by air bubbles passing small glass balls in the presence of nanosized ZnO powder. Russ. J. Phys. Chem. 89, 1884–1890 (2015). https://doi.org/10.1134/S0036024415100210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415100210

Keywords

Navigation