Skip to main content
Log in

A DFT study on the complexation of La3+ ion with malonamide and diglycolamide ligands

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The main goal of this research is to investigate the structural and thermochemical aspects of complexation between La3+ with tetrapropyl malonamide (TPMA) and tetrapropyl diglycolamide (TPDGA) ligands via density functional theory (DFT) methods. In this respect, the structural parameters of [La-TPMA]3+ and [La-TPDGA]3+ complexes have been calculated and compared with the available X-ray crystallographic data. These comparisons revealed that both calculated structural values using B3LYP and M06 are in a reliable agreement with X-ray crystal structure with a near accuracy. In the next step, the more efficiency of diglycolamides in comparison with malonamides in the extraction of La3+ have been analyzed by calculating thermochemical properties of the complexation. It should be stated that this issue has been observed in many experimental elucidations. In the next step, the inclusion of solvent effects on thermodynamical properties of complexation has been evaluated via polarized continuum model (PCM) calculations. In this context, enthalpy and Gibbs free energy changes have been determined in the presence of three solvents, chloroform, toluene and n-hexane. Our obtained results demonstrate that using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene that confirms the previously observed experiments. Finally, the bond orders of some selected key bonds in TPMA and TPDGA ligands and their corresponded La3+ complexes have been evaluated comparatively to analyze the electronic features of coordination in [La-TPMA]3+ and [La-TPDGA]3+ complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bourg, C. Hill, C. Caravaca, C. Rhodes, C. Ekberg, R. Taylor, A. Geist, G. Modolo, L. Cassayre, R. Malmbeck, M. Harrison, G. Angelis, A. Espartero, S. Bouvet, and N. Ouvrier, Nucl. Eng. Des. 241, 3427 (2001).

    Article  Google Scholar 

  2. K. L. Nash, C. Madic, J. N. Mathur, J. Lacquement, in Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstein, J. Fuger, and J. J. Katz, 3rd ed. (Springer, Netherlands, 2006).

  3. Y. Morita, J. P. Glatz, M. Kubota, L. Koch, G. Pagliosa, and K. Roemer, Solvent Extract. Ion Exchange 14, 385 (1996).

    Article  CAS  Google Scholar 

  4. R. Malmbeck, O. Courson, G. Pagliosa, K. Romer, B. Satmark, J. P. Glatz, and P. Baron, Radiochim. Acta 88, 856 (2008).

    Google Scholar 

  5. Y. Wen, Z. Qin, and W. Liu, J. Radioanal. Nucl. Chem. 250, 285 (2001).

    Article  CAS  Google Scholar 

  6. Y. Sasaki, Y. Sugo, S. Suzuki, and S. Tachimori, Solvent Extr. Ion Exch. 19, 91 (2001).

    Article  CAS  Google Scholar 

  7. H. Stephan, K. Gloe, J. Beger, and P. Muhl, Solvent Extract. Ion Exchange 9, 435 (1991).

    Article  CAS  Google Scholar 

  8. H. Stephan, K. Gloe, J. Beger, and P. Muhl, Solvent Extract. Ion Exchange 9, 459 (1991).

    Article  CAS  Google Scholar 

  9. E. A. Mowafy and H. F. Aly, Solvent Extract. Ion Exchange 20, 177 (2002).

    Article  CAS  Google Scholar 

  10. C. Musikas and H. Hubert, Solvent Extract. Ion Exchange 5, 877 (1987).

    Article  CAS  Google Scholar 

  11. C. Cuillerdier, C. Musikas, P. Hoel, N. L. Igond, and X. Vitart, Separat. Sci. Technol. 26, 1229 (1991).

    Article  CAS  Google Scholar 

  12. J. Yao, R. M. Wharf, and G. R. Choppin, in Separation of Elements, Ed. by K. L. Nash and G. R. Choppin (Plenum Press, New York, 1995).

  13. Y. Sasaki and G. R. Choppin, J. Radioanal. Nucl. Chem. 246, 267 (1997).

    Article  Google Scholar 

  14. Y. Sasaki and G. R. Choppin, Radiochim. Acta 180, 85 (1998).

    Google Scholar 

  15. H. Narita, T. Yaita, K. Tamura, and S. Tachimori, Radiochim. Acta 81, 223 (1998).

    CAS  Google Scholar 

  16. H. Narita and S. Tachimori, J. Radioanal. Nucl. Chem. 239, 381 (1999).

    Article  CAS  Google Scholar 

  17. Y. Sasaki, Y. Sugo, S. Suzuki, and S. Tachimori, Solvent. Extract. Ion Exchange 19, 91 (2001).

    Article  CAS  Google Scholar 

  18. Y. Sasaki, P. Rapold, M. Arisaka, M. Hirata, T. Kimura, C. Hill, and G. Cote, Solvent Extract. Ion Exchange 25, 187 (2007).

    Article  CAS  Google Scholar 

  19. E. P. Horwitz, K. A. Martin, and H. Diamond, Solvent Extract. Ion Exchange 6, 859 (1988).

    Article  CAS  Google Scholar 

  20. M. Hirata, P. Guilbaud, M. Dobler, and S. Tachimori, Phys. Chem. Chem. Phys. 5, 691 (2003).

    Article  CAS  Google Scholar 

  21. R. G. Pearson, J. Chem. Educ. 64, 561 (1987).

    Article  CAS  Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  24. S. Kannan, M. A. Moody, C. L. Barnes, and P. B. Duval, Inorg. Chem. 47, 4691 (2008).

    Article  CAS  Google Scholar 

  25. S. A. El-Reefy, E. A. Mowafy, M. M. Abdel-Badei, and H. F. Aly, Radiochim. Acta 77, 195 (1997).

    CAS  Google Scholar 

  26. L. Spjuth, J. O. Liljenzin, M. I. Hudson, M. G. B. Drew, P. B. Iveson, and C. Madic, Solvent Extract. Ion Exchange 18, 1 (2000).

    Article  CAS  Google Scholar 

  27. L. Nigond, C. Musikas, and C. Cuillerdier, Solvent Extract. Ion Exchange 12, 297 (1994).

    Article  CAS  Google Scholar 

  28. V. Barone and M. Cossi, J. Phys. Chem. A 102, 1995 (1998).

    Article  CAS  Google Scholar 

  29. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  30. D. G. Truhlar and Y. Zhao, Theor. Chem. Account. 120, 215 (2008).

    Article  Google Scholar 

  31. M. Dolg, H. Stoll, A. Savin, and H. Preuss, Theor. Chim. Acta 75, 173 (1989).

    Article  CAS  Google Scholar 

  32. M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 85, 441 (1993).

    Article  CAS  Google Scholar 

  33. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  34. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  35. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  36. G. A. Shamov and G. Schreckenbach, J. Phys. Chem. A 109, 10961 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Hosseinnejad.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinnejad, T., Dehghanpour, S. & Basiri-nasab, S. A DFT study on the complexation of La3+ ion with malonamide and diglycolamide ligands. Russ. J. Phys. Chem. 88, 2004–2011 (2014). https://doi.org/10.1134/S0036024414110156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414110156

Keywords

Navigation