Skip to main content
Log in

Densities and Apparent Molar Volumes of Aqueous Solutions of Li2B4O7 and Their Correlation with the Pitzer Model

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Densities of aqueous solutions of Li2B4O7 have been measured by using vibrating-tube densitometer over the temperature ranges 288.15 ≤ T/K ≤ 323.15 at 0.1 MPa pressure. The apparent molar volumes of Li2B4O7 derived from these data have been fitted using Pitzer ion interaction model. The volumetric ion interaction parameters of Li2B4O7 at various temperatures have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Survey of Mining in Qinghai (Renmin Press of Qinghai, Xining, 1998).

  2. S. Y. Gao, J. Z. Wang and S. P. Xia, Oceanol. Limnol. Sin. 20, 429 (1989).

    CAS  Google Scholar 

  3. S. J. Wang, J. Salt Lake Res. 8, 44 (2000).

  4. T. F. Young and M. B. Smith, J. Phys. Chem. 58, 716 (1954). https://doi.org/10.1021/j150519a009

    Article  CAS  Google Scholar 

  5. M. Laliberte and W. E. Cooper, J. Chem. Eng. Data. 49, 1141 (2004). https://doi.org/10.1021/je0498659

    Article  CAS  Google Scholar 

  6. B. M. Fabuss, A. Korosi, and A. K. M. Huq, J. Chem. Eng. Data. 11, 325 (1966). https://doi.org/10.1021/je60030a010

    Article  CAS  Google Scholar 

  7. V. S. Patwardhan and A. Kumar, Aiche J. 32, 1419 (1986). https://doi.org/10.1002/aic.690320903

  8. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973). https://doi.org/10.1021/j100621a026

    Article  CAS  Google Scholar 

  9. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions (CRC, Boca Raton, 1991).

    Google Scholar 

  10. A. Kumar, J. Chem. Eng. Data 31, 19 (1986). https://doi.org/10.1021/je00045a026

    Article  CAS  Google Scholar 

  11. C. Monnin, Geochim. Cosmochim. Acta 53, 1177 (1989). https://doi.org/10.1016/0016-7037(89)90055-0

    Article  CAS  Google Scholar 

  12. A. Lach, L. Andre, S. Guignot, et al., J. Chem. Eng. Data 63, 787 (2018). https://doi.org/10.1021/acs.jced.7b00953

    Article  CAS  Google Scholar 

  13. A. S. Malyutin, N. A. Kovalenko, and I. A. Uspenskaya, Russ. J. Inorg. Chem. 65, 781 (2020). https://doi.org/10.1134/S0036023620050149

    Article  CAS  Google Scholar 

  14. H. R. Galleguillos, M. A. Molina, T. A. Graber, et al., Ind. Eng. Chem. Res. 45, 6604 (2006). https://doi.org/10.1021/ie060294i

    Article  CAS  Google Scholar 

  15. S. Wang, D. Zhao, Y. Song, et al. Russ. J. Inorg. Chem. 64, 661 (2019). https://doi.org/10.1134/S003602361905019X

    Article  CAS  Google Scholar 

  16. H. W. Ge, H. J. Yang, J. L. Li, et al., Russ. J. Inorg. Chem. 65, 222 (2020). https://doi.org/10.1134/S0036023620020059

    Article  CAS  Google Scholar 

  17. P. S. Song, X. H. Du, and H. Xu, Chin. Sci. Bull. 28, 106 (1983). https://doi.org/10.1360/csb1983-28-2-106

    Article  CAS  Google Scholar 

  18. S. Wang, X. Du, and Y. Jing, J. Chem. Eng. Data 62, 253 (2017). https://doi.org/10.1021/acs.jced.6b00626

    Article  CAS  Google Scholar 

  19. S. Sang, T. Deng, and M. Tang, J. Chengdu Univ. Techno. 24, 87 (1997).

    CAS  Google Scholar 

  20. Y. Zeng, H. Yin, and M. Tang, J. Chem. Eng. Univ. 14, 77 (2000).

    CAS  Google Scholar 

  21. Y. F. Guo, K. Zhao, L. Li, et al., J. Chem. Thermodyn. 120, 151 (2018). https://doi.org/10.1016/j.jct.2018.01.018

    Article  CAS  Google Scholar 

  22. Y. Cao, S. Feng, and M. Wu, J. Chem. Thermodyn. 123, 195 (2018). https://doi.org/10.1016/j.jct.2018.03.029

    Article  CAS  Google Scholar 

  23. D. Rowland and P. May, J. Chem. Thermodyn. 128, 195 (2019). https://doi.org/10.1016/j.jct.2018.08.023

    Article  CAS  Google Scholar 

  24. B. Hu, L. Hnedkovsky, W. Li, et al., J. Chem. Eng. Data 61, 1388 (2016). https://doi.org/10.1021/acs.jced.5b00535

    Article  CAS  Google Scholar 

  25. Commission on Isotopic Abundances and Atomic Weights (2015). http://www.ciaaw.org/atomic- weights.htm.

  26. B. S. Krumgalz, R. Pogorelskii, A. Sokolov, et al., J. Phys. Chem. Ref. Data 29, 1123 (2000). https://doi.org/10.1063/1.1321053

    Article  CAS  Google Scholar 

  27. W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002). https://doi.org/10.1063/1.1461829

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Qinghai Province (2017-ZJ-750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F.Y. Densities and Apparent Molar Volumes of Aqueous Solutions of Li2B4O7 and Their Correlation with the Pitzer Model. Russ. J. Inorg. Chem. 66, 104–107 (2021). https://doi.org/10.1134/S0036023621010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621010125

Keywords:

Navigation