Skip to main content
Log in

Synthesis of Substituted Derivatives of closo-Decaborate Anion with a Peptide Bond: The Way towards Designing Biologically Active Boron-Containing Compounds

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel scheme of multi-step synthesis for N-borylated dipeptide R-GlyPheOEt is proposed, which is based on the nucleophilic addition of amino acid derivatives to the [2-B10H9NCCH3] anion. The products obtained at each step were studied by NMR, IR spectroscopy, and ESI mass spectrometry. The single-crystal structure of (NBu4)[2-B10H9NH=C(NH2CH2COOtC4H9)CH3] was identified by XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. Bregadze and I. Sivaev, Boron Sci. (CRC, 2011). https://doi.org/10.1201/b11199-14

    Chapter  Google Scholar 

  2. H. R. Snyder, A. J. Reedy, W. J. Lennarz, et al., J. Am. Chem. Soc. 80, 835 (1958). https://doi.org/10.1021/ja01537a021

    Article  CAS  Google Scholar 

  3. S. Diaz, A. Gonzalez, R. S. de Gonzalez, et al., J. Organomet. Chem. 610, 25 (2000). https://doi.org/10.1016/S0022-328X0000363-6

    Article  CAS  Google Scholar 

  4. R. R. Srivastava, R. R. Singhaus, and G. W. Kabalka, Org. Chem. 64, 8495 (1999). https://doi.org/10.1021/jo990878c

    Article  CAS  Google Scholar 

  5. G. W. Kabalka, M.-L. Yao, and Z. Wu, Org. Process Res. Dev. 10, 1059 (2006). https://doi.org/10.1021/op060052u

    Article  CAS  Google Scholar 

  6. P. Ryynänen, A. Kangasmäki, P. Hiismaki, et al., Phys. Med. Biol. 47 (4), 737 (2002). https://doi.org/10.1088/0031-9155/47/5/304

    Article  PubMed  Google Scholar 

  7. P. F. Kaiser, Q. I. Churches, and C. A. Hutton, Aust. J. Chem. 60, 799 (2007). https://doi.org/10.1071/CH07103

    Article  CAS  Google Scholar 

  8. G. W. Kabalka and M. L. Yao, Anticancer. Agents Med. Chem. 6, 111 (2006). https://doi.org/10.2174/187152006776119144

    Article  CAS  PubMed  Google Scholar 

  9. O. Leukart, M. Caviezel, A. Eberle, et al., Helv. Chim. Acta 59, 2184 (1976). https://doi.org/10.1002/hlca.19760590630

    Article  Google Scholar 

  10. R. R. Srivastava, R. R. Singhaus, and G. W. Kabalka, Org. Chem. 62, 4476 (1997). https://doi.org/10.1021/jo970148+

    Article  CAS  Google Scholar 

  11. S. B. Kahl and R. A. Kasar, J. Am. Chem. Soc. 118, 1223 (2002). https://doi.org/10.1021/ja9534260

    Article  Google Scholar 

  12. T. He and R. A. Musah, ACS Omega 4, 3820 (2019). https://doi.org/10.1021/acsomega.8b03407

    Article  CAS  Google Scholar 

  13. P. Perugini and F. Pavanetto, J. Microencapsul. 15, 473 (1998). https://doi.org/10.3109/02652049809006874

    Article  CAS  PubMed  Google Scholar 

  14. F. Pavanetto and P. Perugini, Drug Deliv. 7, 97 (2002). https://doi.org/10.1080/107175400266669

    Article  Google Scholar 

  15. S. Martini, S. Ristori, A. Pucci, et al., Biophys. Chem. 111, 27 (2004). https://doi.org/10.1016/j.bpc.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  16. V. Bregadze, A. Semioshkin, and I. Sivaev, Appl. Radiat. Isot. 69, 1774 (2011). https://doi.org/10.1016/j.apradiso.2011.01.043

    Article  CAS  Google Scholar 

  17. S. Kusaka, Y. Hattori, K. Uehara, et al., Appl. Radiat. Isot. 69, 1768 (2011). https://doi.org/10.1016/j.apradiso.2011.03.042

    Article  CAS  PubMed  Google Scholar 

  18. Y. Hattori, S. Kusaka, M. Mukumoto, et al., J. Med. Chem. 55, 6980 (2012). https://doi.org/10.1021/jm300749q

    Article  CAS  PubMed  Google Scholar 

  19. K. Y. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  20. I. N. Klyukin, A. P. Zhdanov, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 58, 1395 (2013). https://doi.org/10.1134/S0036023613120140

    Article  CAS  Google Scholar 

  21. I. N. Klyukin, A. S. Kubasov, I. P. Limarev, et al., Polyhedron 101, 215 (2015). https://doi.org/10.1016/j.poly.2015.09.025

    Article  CAS  Google Scholar 

  22. I. N. Klyukin, A. P. Zhdanov, E. Y. Matveev, et al., Inorg. Chem. Commun. 50, 28 (2014). https://doi.org/10.1016/j.inoche.2014.10.008

    Article  CAS  Google Scholar 

  23. E. Y. Matveev, A. S. Kubasov, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 60, 776 (2015). https://doi.org/10.1134/S0036023615070104

    Article  CAS  Google Scholar 

  24. A. S. Kubasov, E. Y. Matveev, E. S. Turyshev, et al., Dokl. Chem. 477, 257 (2017). https://doi.org/10.1134/S0012500817110088

    Article  CAS  Google Scholar 

  25. A. P. Zhdanov, K. A. Zhdanova, A. Y. Bykov, et al., Polyhedron 139, 125 (2018). https://doi.org/10.1016/j.poly.2017.09.050

    Article  CAS  Google Scholar 

  26. I. N. Klyukin, A. P. Zhdanov, A. Yu. Bykov, et al., Russ. J. Inorg. Chem. 63, 213 (2018). https://doi.org/10.1134/S0036023618020110

    Article  CAS  Google Scholar 

  27. A. P. Zhdanov, M. V. Lisovsky, L. V. Goeva, et al., Russ. Chem. Bull. 58, 1694 (2009). https://doi.org/10.1007/s11172-009-0234-9

    Article  CAS  Google Scholar 

  28. A. L. Mindich, N. A. Bokach, M. L. Kuznetsov, et al., ChemplusChem. 77, 1075 (2012). https://doi.org/10.1002/cplu.201200257

    Article  CAS  Google Scholar 

  29. K. A. Zhdanova, A. P. Zhdanov, A. V. Ezhov, et al., Russ. Chem. Bull. 63, 194 (2014). https://doi.org/10.1007/s11172-014-0413-1

    Article  CAS  Google Scholar 

  30. K. A. Zhdanova, A. P. Zhdanov, A. V. Ezhov, et al., Macroheterocycles 7, 394 (2014). https://doi.org/10.6060/mhc140494z

    Article  CAS  Google Scholar 

  31. M. Y. Losytskyy, V. B. Kovalska, O. A. Varzatskii, et al., J. Lumin. 169, 51 (2016). https://doi.org/10.1016/j.jlumin.2015.08.042

    Article  CAS  Google Scholar 

  32. D. S. Bolotin, V. K. Burianova, A. S. Novikov, et al., Organometallics 35, 3612 (2016). https://doi.org/10.1021/acs.organomet.6b00678

    Article  CAS  Google Scholar 

  33. A. P. Zhdanov, I. N. Klyukin, A. Y. Bykov, et al., Polyhedron 123, 176 (2017). https://doi.org/10.1016/j.poly.2016.11.035

    Article  CAS  Google Scholar 

  34. D. S. Bolotin, M. Y. Demakova, E. A. Daines, et al., Russ. J. Gen. Chem. 87, 37 (2017). https://doi.org/10.1134/S107036321701008X

    Article  CAS  Google Scholar 

  35. A. P. Zhdanov, A. Y. Bykov, A. S. Kubasov, et al., Russ. J. Inorg. Chem. 62, 468 (2017). https://doi.org/10.1134/S0036023617040210

    Article  CAS  Google Scholar 

  36. V. K. Burianova, A. S. Mikherdov, D. S. Bolotin, et al., J. Organomet. Chem. 870, 97 (2018). https://doi.org/10.1016/j.jorganchem.2018.06.017

    Article  CAS  Google Scholar 

  37. E. A. Daines, D. S. Bolotin, N. A. Bokach, et al., Inorg. Chim. Acta 471, 372 (2018). https://doi.org/10.1016/j.ica.2017.11.054

    Article  CAS  Google Scholar 

  38. V. K. Burianova, D. S. Bolotin, A. S. Mikherdov, et al., New J. Chem. 42, 8693 (2018). https://doi.org/10.1039/c8nj01018h

    Article  CAS  Google Scholar 

  39. A. L. Mindich, N. A. Bokach, F. M. Dolgushin, et al., Organometallics 31, 1716 (2012). https://doi.org/10.1021/om200993f

    Article  CAS  Google Scholar 

  40. A. L. Mindich, N. A. Bokach, M. L. Kuznetsov, et al., Organometallics 32, 6576 (2013). https://doi.org/10.1021/om400892x

    Article  CAS  Google Scholar 

  41. SAINT, Version 7.23A (Bruker, 2003).

  42. SADABS-2004/1 (Bruker, 2004).

  43. G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  44. G. M. Sheldrick, Acta Crystallogr. Sect. A. Found. Crystallogr. 71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  45. I. B. Sivaev, N. A. Votinova, V. I. Bragin, et al., J. Organomet. Chem. 657, 163 (2002). https://doi.org/10.1016/S0022-328X0201419-5

    Article  CAS  Google Scholar 

  46. A. P. Zhdanov, I. N. Polyakova, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 56, 847 (2011). https://doi.org/10.1134/S003602361106026X

    Article  CAS  Google Scholar 

  47. M. Y. Losytskyy, V. B. Kovalska, O. A. Varzatskii, et al., J. Lumin. 169, 51 (2016). https://doi.org/10.1016/j.jlumin.2015.08.042

    Article  CAS  Google Scholar 

  48. A. V. Ezhov, F. Y. Vyal’ba, I. N. Kluykin, et al., Macroheterocycles 10, 505 (2017). https://doi.org/10.6060/mhc171254z

    Article  CAS  Google Scholar 

  49. J. F. W. McOmie, Protective Groups in Organic Chemistry (Springer, Boston, MA, 1995). https://doi.org/10.1007/978-1-4684-7218-9

    Google Scholar 

  50. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  51. F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem. Soc., Perkin Trans. 2, 1 (1987) https://doi.org/10.1039/p298700000s1

    Article  Google Scholar 

  52. S. Z. Konieczka, A. Himmelspach, M. Hailmann, et al., Eur. J. Inorg. Chem., No. 1, 134 (2013). https://doi.org/10.1002/ejic.201200969

    Article  Google Scholar 

  53. F. Li, K. Shelly, C. B. Knobler, et al., Inorg. Chem. 38, 4926 (1999). https://doi.org/10.1021/ic990744h

    Article  CAS  PubMed  Google Scholar 

  54. D. B. Bryan, R. F. Hall, K. G. Holden, et al., J. Am. Chem. Soc. 99, 2353 (1977). https://doi.org/10.1021/ja00449a063

    Article  CAS  Google Scholar 

  55. F. Alam, A. H. Soloway, R. F. Barth, et al., J. Med. Chem. 32, 2326 (1989). https://doi.org/10.1021/jm00130a017

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were conducted using the facilities of the Shared Physical Analysis Facilities Center of the Kurnakov Institute of General and Inorganic Chemistry, which functions under the State Assignment to the Kurnakov Institute in the field of basic research.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00218_a) and the Council of Russian Federation Presidential Grants (project nos. MK-2403.2019.3 and NSh-2845.2018.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhdanov.

Ethics declarations

This article summarizes the results of the research paper competition held under the IX Conference of Young Scientists on General and Inorganic Chemistry (Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia, 2019).

Additional information

Translated by D. Terpilovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelyubin, A.V., Klyukin, I.N., Zhdanov, A.P. et al. Synthesis of Substituted Derivatives of closo-Decaborate Anion with a Peptide Bond: The Way towards Designing Biologically Active Boron-Containing Compounds. Russ. J. Inorg. Chem. 64, 1499–1506 (2019). https://doi.org/10.1134/S003602361912012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361912012X

Keywords:

Navigation