Skip to main content
Log in

Modeling of self-organization processes in crystal-forming systems: Templated precursor nanoclusters T48 and the self-assembly of crystal structures of 15-crown-5, Na-FAU, 18-crown-6, Na-EMT, and Ca,Ba-TSC zeolites

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The combinatorial and topological modeling of packings of symmetry-related nanoclusters T48 (diameter: ∼16 Å, symmetry \(\bar 43m\)) is performed. The packings are 1D claims S 13 and 2D microlayers S 23 , which give rise to 3D structures S 33 . For three of the five framework structures, correspondence was established with zeolite FAU (Faujasite, Fd-3m, Z = 4 T48), EMT (P63/mmc, Z = 2 T48), and TSC (Tschortnerite \(Fm\bar 3m\), Z = 8 T48). Combinatorial topological analysis methods (the ToposPro program package) were used to model the steps of zeolite crystal structure self-assembly. The underlying idea of these methods consists in that the basal 3D network of the zeolite structure is designed as a graph, where the nodes correspond to the centroid positions of clusters T48. For FAU, the basal 3D network corresponds to the copper cubic strucutre (CN = 12); for EMT, it corresponds to the hexagonal (H) strucutre of magnesium (CN = 12); and for TSC, to the cubic structure of polonium (CN = 6). The symmetry and topology code of zeolite strucutre formation has been restored in the form of the sequence of significant elementary events that characterize the shortest (rapidest) program of convergent cluster self-assembly. The functional role played by 15-crown-5 and 18-crown-6 template molecules has been established to consist in the stabilization of the primary chains and microlayers of FAU and EMT frameworks and the relevant network of diamond and graphite topological types. The model for 3D structure self-assembly from clusters T48 is capable of explaining the morphogenesis of single crystals to form regular octahedra in FAU, hexagonal prisms in EMT, and regular cubes in TSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Steed and J. L. Atwood, Supramolecular Chemistry (Wiley, 2000; Akademkniga, Moscow, 2007).

    Google Scholar 

  2. Supramolecular Polymers, Ed. by A. Ciferri (Marcel Dekker, New York, 2005).

    Google Scholar 

  3. G. R. Desiraju, J. Am. Chem. Soc. 135, 9952 (2013).

    Article  CAS  Google Scholar 

  4. G. Ferey, C. Mellot-Draznieks, and T. Loiseau, Solid State Sci. 5, 79 (2003).

    Article  CAS  Google Scholar 

  5. G. Ferey, M. Haouas, T. Loiseau, and F. Taulelle, Chem. Mater. 26, 299 (2014).

    Article  CAS  Google Scholar 

  6. Y. Li and J. Yu, Chem. Revs. 114, 7268 (2014).

    Article  CAS  Google Scholar 

  7. G. D. Ilyushin, Struct. Chem. 20, 975 (2012).

    Google Scholar 

  8. G. D. Ilyushin, Russ. J. Inorg. Chem. 58, 1541 (2013).

    Article  Google Scholar 

  9. G. D. Ilyushin, Russ. J. Inorg. Chem. 59, 1568 (2014).

    Article  Google Scholar 

  10. G. D. Ilyushin, Modeling of Self-Organization Processes in Crystal-Forming Systems (URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  11. http://www.iza-structure.org/databases/

  12. N. A. Anurova, V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, J. Phys. Chem. 114, 10160 (2010).

    Article  CAS  Google Scholar 

  13. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Chem. Mater. 25, 412 (2013).

    Article  CAS  Google Scholar 

  14. M. V. Peskov, V. A. Blatov, G. D. Ilyushin, and U. Schwingenschlögl, J. Phys. Chem. 116, 6734 (2012).

    CAS  Google Scholar 

  15. G. D. Ilyushin and V. A. Blatov, Crystallogr. Repts 57, 875 (2012).

    Article  CAS  Google Scholar 

  16. G. D. Ilyushin and V. A. Blatov, Kristallografiya 58, 528 (2013).

    Google Scholar 

  17. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio, Cryst. Growth Des. 14, 3576 (2014).

    Article  CAS  Google Scholar 

  18. H. Effenberger, G. Giester, W. Krause, and H. Bernhardt, J. Am. Miner 83, 607 (1998).

    CAS  Google Scholar 

  19. F. Delprato, L. Delmotte, J. L. Guth, and L. Huve, Appl. Spectr. 10, 546 (1990).

    CAS  Google Scholar 

  20. J. J. Pluth and J. V. Smith, Mater. Res. Bull. 7, 1311 (1972).

    Article  CAS  Google Scholar 

  21. W. T. A. Harrison, T. E. Gier, K. L. Moran, et al., Chem. Mater. 3, 27 (1991).

    Article  CAS  Google Scholar 

  22. G. M. Johnson, Y.-J. Lee, A. Tripathi, and J. B. Parise, Micropor. Mesopor. Mater 1, 195 (1999).

    Article  Google Scholar 

  23. Ch. Baerlocher, L. B. McCusker, and R. Chiappetta, Micropor. Mater. 2, 269 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ilyushin.

Additional information

Original Russian Text © G.D. Ilyushin, V.A. Blatov, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 4, pp. 529–543.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyushin, G.D., Blatov, V.A. Modeling of self-organization processes in crystal-forming systems: Templated precursor nanoclusters T48 and the self-assembly of crystal structures of 15-crown-5, Na-FAU, 18-crown-6, Na-EMT, and Ca,Ba-TSC zeolites. Russ. J. Inorg. Chem. 60, 469–482 (2015). https://doi.org/10.1134/S0036023615040063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615040063

Keywords

Navigation