Skip to main content
Log in

Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Peculiarities of the structure, magnetic properties, and temperature dependence of magnetoimpedance effect of a Fe20Co6Ni74/Cu98Be2 composite wire with the induced axial magnetic anisotropy are studied in this work. The increase in the temperature in a range from 150 to 450 K is shown to lead to an increase in the magnetoimpedance effect. To explain the experimental results, a model is proposed, which takes temperature variations of the magnetization and magnetic anisotropy constant of the Fe20Co6Ni74 magnetic layer into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960; Nauka, Moscow, 1982).

  2. A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).

    Google Scholar 

  3. L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).

    Article  CAS  Google Scholar 

  4. R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).

    Article  CAS  Google Scholar 

  5. M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter. 7, 115–120 (1995).

    Google Scholar 

  6. H. Chiriac, C. Sandrino Marinescu, and T.-A. Óvári, “Temperature dependence of the magneto-impedance effect in Co-rich amorphous glass-covered wires,” J. Magn. Magn. Mater. 215–216, 539–541 (2000).

    Article  Google Scholar 

  7. A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).

    Article  CAS  Google Scholar 

  8. A. V. Semirov, M. S. Derevyanko, D. A. Bukreev, A. A. Moiseev, and G. V. Kurlyandskaya, “Impedance and magnetic properties of CoFeCrSiB amorphous ribbons near the Curie point,” Tech. Phys. 58, 774–777 (2013).

    Article  CAS  Google Scholar 

  9. D. A. Bukreev, A. A. Moiseev, M. S. Derevyanko, and A. V. Semirov, “High-frequency electric properties of amorphous soft magnetic cobalt-based alloys in the region of transition to the paramagnetic state,” Russ. Phys. J. 58, 141–145 (2015).

    Article  CAS  Google Scholar 

  10. S. O. Volchkov, M. A. Cerdeira, V. V. Gubernatorov, E. I. Duhan, A. P. Potapov, and V. A. Lukshina, “Effects of slight plastic deformation on magnetic properties and giant magnetoimpedance of FeCoCrSiB amorphous ribbons,” Chin. Phys. Lett. 24, 1357–1360 (2007).

    Article  CAS  Google Scholar 

  11. E. V. Golubeva, E. A. Stepanova, K. G. Balymov, S. O. Volchkov, and G. V. Kurlyandskaya, “Magnetic properties and the giant magnetoimpedance of amorphous Co-based wires with a carbon coating,” Phys. Met. Metallogr. 119, 324–331 (2018).

    Article  CAS  Google Scholar 

  12. R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).

    Article  CAS  Google Scholar 

  13. A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2011).

    Article  CAS  Google Scholar 

  14. R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto-impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).

    Article  CAS  Google Scholar 

  15. A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov, and A. M. Yakunin, “Nonlinear magnetization reversal in copper-permalloy composite wires induced by a high-frequency current,” Tech. Phys. Lett. 27, 313–315 (2001).

    Article  CAS  Google Scholar 

  16. G. Kurlyandskaya, H. García-Miquel, M. Vázquez, A. Svalov, and V. Vas’kovskiy, “Longitudinal magnetic bistability of electroplated wires,” J. Magn. Magn. Mater. 249, 34–38 (2002).

    Article  CAS  Google Scholar 

  17. G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larranaga, “Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 4, 7604104. (2017).

    Article  Google Scholar 

  18. D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, “Magneto-impedance effect of composite wires prepared by chemical plating under DC current,” Nano-Micro Lett. 6, 227–232 (2014).

    Article  CAS  Google Scholar 

  19. A. C. Mishra, “Microstructure, magnetic and magnetoimpedance properties in electrodeposited NiFe/Cu and CoNiFe/Cu wire with thiourea additive in plating bath,” Phys. B 407, 923–934 (2012).

    Article  CAS  Google Scholar 

  20. D. García, G. V. Kurlyandskaya, M. Vázquez, F. I. Toth, and L. K. Varga, “Influence of field annealing on the hysteretic behaviour of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells,” J. Magn. Magn. Mater. 203, 208–210 (1999).

    Article  Google Scholar 

  21. G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskii, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).

    Article  Google Scholar 

  22. A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko,“ Automated measuring complex for magnetic impedance spectroscopy of soft magnetic materials,” Nauch. Pribostr. 20, 42–45 (2010).

    Google Scholar 

  23. L. Kraus, “GMI modeling and material optimization,” Sens. Actuators, A 106, 187–194 (2003).

    Article  CAS  Google Scholar 

  24. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc., A 240, 599–642 (1948).

  25. F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Phys. 61, 206–219 (1930).

    CAS  Google Scholar 

  26. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

Download references

Funding

This study was performed in terms of research assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. 3.1941.2017/4.6). Some studies were performed using equipment available in the Collective Usage Scientific Center of the University of the Basque Country (SGIKER UPV-EHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moiseev.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseev, A.A., Bukreev, D.A., Derevyanko, M.S. et al. Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy. Phys. Metals Metallogr. 121, 429–433 (2020). https://doi.org/10.1134/S0031918X20050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20050087

Keywords:

Navigation