Skip to main content
Log in

Aqueous suspensions of single-wall carbon nanotubes: Degree of aggregation into bundles and optical properties

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2014

Abstract

Aqueous suspensions of nanotubes, as well as the structure and optical properties of their aggregates (bundles), are studied by spectroscopy and high-resolution electron microscopy. The structure of nanoparticles is controlled by varying the ultrasonication time during preparation of suspensions. It is found that the defectiveness of nanotubes increases with decreasing bundle size. A correlation is shown to take place between the suspension preparation regime, the structure of nanoparticles, and the relaxation of the photoexcitation energy of their electronic shells. It is found that the efficiency of photoexcitation energy conversion into heat increases with increasing degree of aggregation of nanotubes into bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, Carbon 40, 1789 (2002).

    Article  Google Scholar 

  2. I. M. Belousova, N. G. Mironova, A. G. Scobelev, and M. S. Yur’ev, Opt. Commun. 235, 445 (2004).

    Article  ADS  Google Scholar 

  3. J. Wang, Y. Chen, and W. J. Blau, J. Mater. Chem. 19, 7425 (2009).

    Article  Google Scholar 

  4. S. Rahman, S. Mirza, A. Sarkar, and G. W. Rayfield, J. Nanosci. Nanotechnol. 10, 4805 (2010).

    Article  Google Scholar 

  5. Z. Shi, Y. Lian, X. Zhou, Zh. Gu, Y. Zhang, S. Iijima, Q. Gong, H. Li, and S. Zhang, Chem. Commun. 6, 461 (2000).

    Google Scholar 

  6. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).

    Article  ADS  Google Scholar 

  7. G. Moos, R. Fasel, and T. Hertel, J. Nanosci. Nanotechnol. 3, 145 (2003).

    Article  Google Scholar 

  8. S. Reich, C. Thornsen, and J. Maultzsch, Carbon Nanotubes. Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  9. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett. 3, 269 (2003).

    Article  ADS  Google Scholar 

  10. A. V. Venediktova, A. Yu. Vlasov, E. D. Obraztsova, D. A. Videnichev, I. M. Kislyakov, and E. P. Sokolova, Appl. Phys. Lett. 100, 251903 (2012).

    Article  ADS  Google Scholar 

  11. A. Yu. Vlasov, A. V. Venediktova, D. A. Videnichev, I. M. Kislyakov, E. D. Obraztsova, and E. P. Sokolova, Phys. Status Solidi B 249, 2341 (2012).

    Article  ADS  Google Scholar 

  12. N. R. Arutyunyan, D. V. Baklashev, and E. D. Obraztsova, Eur. Phys. J. B 75, 163 (2010).

    Article  ADS  Google Scholar 

  13. A. I. Chernov and E. D. Obraztsova, Phys. Status Solidi B 247, 2805 (2010).

    Article  Google Scholar 

  14. S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).

    Article  ADS  Google Scholar 

  15. D. I. Videnichev and I. M. Belousova, Appl. Phys. B: Las. Opt. 2013 (in press).

    Google Scholar 

  16. L. Wei, L.-J. Li, M. B. Chan-Park, Y. Yang, and Y. Chen, J. Phys. Chem. C 114, 6704 (2010).

    Article  Google Scholar 

  17. S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).

    Article  ADS  Google Scholar 

  18. E. D. Obraztsova, M. Fujii, S. Hayashi, A. S. Lobach, I. I. Vlasov, A. V. Khomich, V. Yu. Timoshenko, W. Wenseleers, and E. Goovaerts, Nanoengineered Nanofibrous Materials. NATO Science Series II: Mathematics, Physics and Chemistry (Kluwer, Dordrecht, 2004), Vol. 169.

    Google Scholar 

  19. L. Cognet, D. A. Tsyboulski, J.-D. R. Rocha, C. D. Doyle, J. M. Tour, and R. B. Weisman, Science 316, 1465 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Venediktova.

Additional information

Original Russian Text © A.V. Venediktova, V.N. Bocharov, A.Yu. Vlasov, I.M. Kislyakov, V.M. Kiselev, E.A. Kats, E.D. Obraztsova, A.S. Pozharov, S.A. Povarov, 2014, published in Optika i Spektroskopiya, 2014, Vol. 116, No. 3, pp. 448–453.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venediktova, A.V., Bocharov, V.N., Vlasov, A.Y. et al. Aqueous suspensions of single-wall carbon nanotubes: Degree of aggregation into bundles and optical properties. Opt. Spectrosc. 116, 418–423 (2014). https://doi.org/10.1134/S0030400X14030230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14030230

Navigation