Skip to main content
Log in

Hydrogel microchip as a tool for studying exosomes in human serum

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Exosomes are cell-derived vesicles that are secreted by both normal and cancer cells. Over the last decade, a few studies have revealed that exosomes cross talk and/or influence major tumor-related pathways such as angiogenesis and metastasis involving many cell types within the tumor microenvironment. The protein composition of the membrane of an exosome reflects that of the membrane of the cell of origin. Because of this, tumor-derived exosomes differ from exosomes that are derived from normal cells. The detection of tumor exosomes and analysis of their molecular composition hold promise for diagnosis and prognosis of cancer. Here, we present hydrogel microarrays (biochips), which contain a panel of immobilized antibodies that recognize tetraspanins (CD9, CD63, CD81) and prognostic markers for colorectal cancer (A33, CD147). These biochips make it possible to analyze the surface proteins of either isolated exosomes or exosomes that are present in the serum samples without isolation. These biochips were successfully used to analyze the surface proteins of exosomes from serum that was collected from a colorectal cancer patient and healthy donor. Biochip-guided immunofluorescent analysis of the exosomes has made it possible for us to detect the A33 antigen and CD147 in the serum sample of the colorectal cancer patient with normal levels of CEA and CA19-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iraci N., Leonardi T., Gessler F., et al. 2016. Focus on extracellular vesicles: Physiological role and signalling properties of extracellular membrane vesicles. Int. J. Mol. Sci. 17, 171.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li J., Liu K., Liu Y., et al. 2013. Exosomes mediate the cell-to-cell transmission of IFN-induced antiviral activity. Nat. Immunol. 14, 793–803.

    Article  CAS  PubMed  Google Scholar 

  3. Cossetti C., Iraci N., Mercer T.R., et al. 2014. Extracellular vesicles from neural stem cells transfer IFN-via Ifngr1 to activate Stat1 signaling in target cells. Mol. Cell. 56, 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bobrie A., Colombo M., Raposo G., et al. 2011. Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic. 12, 1659–1668.

    Article  CAS  PubMed  Google Scholar 

  5. Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C., et al. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigenpresenting cells. Nat. Commun. 2, 282.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johnstone R.M., Adam M., Hammond J.R., et al. 1987. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420.

    CAS  PubMed  Google Scholar 

  7. Raposo G., Stoorvogel W. 2013. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zoller M. 2009. Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer. 9, 40–55.

    Article  PubMed  Google Scholar 

  9. Rana S., Zoller M. 2011. Exosome target cell selection and the importance of exosomal tetraspanins: A hypothesis. Biochem. Soc. Trans. 39, 559–562.

    Article  CAS  PubMed  Google Scholar 

  10. Martínez Z.A., Yáñez-Mó M. 2014. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442.

    Google Scholar 

  11. Keerthikumar S., Gangoda L., Gho Y.S., Mathivanan S. 2017. Bioinformatics tools for extracellular vesicles research. Meth. Mol Biol. 1545, 189–196.

    Article  Google Scholar 

  12. Al-Nedawi K., Meehan B., Rak J. 2009. Microvesicles: Messengers and mediators of tumor progression. Cell Cycle. 8, 2014–2018.

    Article  CAS  PubMed  Google Scholar 

  13. Martins V.R., Dias M.S., Hainaut P. 2013. Tumor-cellderived microvesicles as carriers of molecular information in cancer. Curr. Opin. Oncol. 1, 66–75.

    Article  Google Scholar 

  14. Hoshino A., Costa-Silva B., Shen T., et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature. 527 (7578), 329–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rak J. 2015. Cancer: Organ-seeking vesicles. Nature. 527 (7578), 312314.

    Article  Google Scholar 

  16. Simpson R.J., Lim J.W., Moritz R.L., et al. 2009. Exosomes: Proteomic insights and diagnostic potential. Expert. Rev. Proteomics. 6, 267–283.

    Article  CAS  PubMed  Google Scholar 

  17. Jia S., Zocco D., Samuels M.L., et al. 2014. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev. Mol. Diagn. 14 (3), 307–321.

    Article  CAS  PubMed  Google Scholar 

  18. Street J.M., Yuen P.S., Star R.A. 2014. Bioactive exosomes: Possibilities for diagnosis and management of bladder cancer. J. Urol. 192 (2), 297–306.

    Article  PubMed  Google Scholar 

  19. Sheridan C. 2016. Exosome cancer diagnostic reaches market. Nat. Biotechnol. 34, 359–360.

    Article  CAS  PubMed  Google Scholar 

  20. Witwer K.W., Buzás E.I., Bemis L.T., et al. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2, 20360–20385.

    Article  Google Scholar 

  21. Thery C., Amigorena S., Raposo G., et al. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Ch. 3, Unit 3.22.

    Google Scholar 

  22. Rubina A.Y., Dementieva E.I., Stomakhin A.A., et al. 2003. Hydrogel-based protein microchips: Manufacturing, properties, and applications. Biotechniques. 34, 1008–1022.

    CAS  PubMed  Google Scholar 

  23. Hermanson G.T. 1996. Bioconjugate Techniques. San Diego, CA: Academic Press.

    Google Scholar 

  24. Luga V., Zhang L., Viloria-Petit A.M., et al. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151, 1542–1556.

    Article  CAS  PubMed  Google Scholar 

  25. Smyth T.J., Redzic J.S., Graner M.W., et al. 2014. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim. Biophys. Acta. 1838, 2954–2965.

    Article  CAS  PubMed  Google Scholar 

  26. Yue S., Mu W., Erb U., Zöller M. 2015. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget. 6, 2366–2384.

    Article  PubMed  Google Scholar 

  27. Zarovni N., Corrado A., Guazzi P., et al. 2015. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 87, 46–58.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor D.D., Zacharias W., Gercel-Taylor C. 2011. Exosome isolation for proteomic analyses and RNA profiling. Meth. Mol. Biol. 728, 235–246.

    Article  CAS  Google Scholar 

  29. Belov L., Matic K.J., Hallal S., et al. 2016. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J. Extracell. Vesicles. 5, 1–12.

    Article  Google Scholar 

  30. Vlassov A.V., Magdaleno S., Setterquist R., et al. 2012. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta. 1820, 940–948.

    Article  CAS  PubMed  Google Scholar 

  31. Sakamoto J., Kojima H., Kato J., et al. 2000. Organspecific expression of the intestinal epithelium-related antigen A33, a cell surface target for antibody-based imaging and treatment in gastrointestinal cancer. Cancer Chemother. Pharmacol. 46, Suppl: S27–32.

    Article  CAS  PubMed  Google Scholar 

  32. Ritter G., Cohen L.S., Williams C. Jr., et al. 2001. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res. 61 (18), 6851–6859.

    CAS  PubMed  Google Scholar 

  33. Tian X., Ye C., Yang Y., et al. 2015. Expression of CD147 and matrix metalloproteinase-11 in colorectal cancer and their relationship to clinicopathological features. J. Transl. Med. 13, 337.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Welt S., Divgi C.R., Real F.X., et al. 1990. Quantitative analysis of antibody localization in human metastatic colon cancer: A Phase I study of monoclonal antibody A33. J. Clin. Oncol. 8, 1894–1906.

    Article  CAS  PubMed  Google Scholar 

  35. Garin-Chesa P., Sakamoto J., Welt S., et al. 1996. Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int. J. Oncol. 9, 465–471.

    CAS  Google Scholar 

  36. Daghighian F., Barendswaard E., Welt S., et al. 1996. Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody. J. Nucl. Med. 37, 1052–1057.

    CAS  PubMed  Google Scholar 

  37. Mathivanan S., Lim J.W., Tauro B.J., et al. 2010. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics. 9 (2), 197–208.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshioka Y., Kosaka N., Konishi Y., et al. 2014. Ultrasensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5, 3591.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Butvilovskaya.

Additional information

Original Russian Text © V.I. Butvilovskaya, A.A. Tikhonov, E.N. Savvateeva, A.A. Ragimov, E.L. Salimov, S.A. Voloshin, D.V. Sidorov, M.A. Chernichenko, A.P. Polyakov, M.M. Filushin, M.V. Tsybulskaya, A.Yu. Rubina, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 5, pp. 817–823.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butvilovskaya, V.I., Tikhonov, A.A., Savvateeva, E.N. et al. Hydrogel microchip as a tool for studying exosomes in human serum. Mol Biol 51, 712–717 (2017). https://doi.org/10.1134/S0026893317050053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317050053

Keywords

Navigation