Skip to main content
Log in

Auto-inducible expression system based on the SigB-dependent ohrB promoter in Bacillus subtilis

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A reliable production of heterologous proteins is important in the field of industrial biotechnology. This can be achieved by applying auto-inducible gene expression systems. Development of a Bacillus subtilis expression plasmid harboring SigB-dependent ohrB promoter was reported. The expression system was subjected to high cell density cultivation to produce xylanase as a stable model protein. The recombinant strain was cultured in a synthetic medium containing glucose as the carbon source. The exponential fed-batch feeding strategy was applied to prevent substrate inhibition. A sharp increase of xylanase activity (about 6-fold) at the end of fermentation was observed as a result of sigma factor B (SigB) protein activation, supporting autoinducibility of the expression system. For the control strain a specific induction of the xylanase activity was not observed. The recombinant strain showed a 5-fold increase in xylanase activity in comparison with the control strain. In addition, the constructed system displayed the catabolite repression resistance ability. This SigB-dependent expression system can be considered as a biotechnological tool and an alternative to the high costing conventional inducers, e.g. isopropyl-β-galactopyranoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Contreras J.A.R., Pedraza-Reyes M., Ordonez L.G., Estrada N.U., Barba de la Rosa A.P., Leon-Rodriguez A.D. 2010. Replicative and integrative plasmids for production of human interferon gamma in Bacillus subtilis. Plasmid. 64, 170–176.

    Article  Google Scholar 

  2. Lei W., Jian-Dong T., Ren W., Er-Na X., Xiao-fei W., Lei W., Zhi W. 2010. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis. Biotechnol. Appl. Biochem. 56, 1–6.

    Article  Google Scholar 

  3. Liu J.M., Xin X.J., Li C.X., Xu J.H., Bao J. 2012. Cloning of thermostable cellulase genes of Clostridium thermocellum and their secretive expression in Bacillus subtilis. Appl. Biochem. Biotechnol. 166, 652–662.

    Article  CAS  PubMed  Google Scholar 

  4. Phan T.T.P., Nguyen H.D., Schumann W. 2012. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J. Biotechnol. 157, 167–172.

    Article  CAS  PubMed  Google Scholar 

  5. Nocadello S., Swennen E.F. 2012. The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli. Microb. Cell Fac. 11, 3–10.

    Article  CAS  Google Scholar 

  6. Ming Y.M., Wei Z.W., Lin C.Y., Sheng G.Y. 2010. Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb. Cell Fac. 9, 55–63.

    Article  Google Scholar 

  7. Schumann W. 2007. Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 62, 137–189.

    Article  CAS  PubMed  Google Scholar 

  8. Wenzel M., Muller A., Siemann-Herzberg M., Altenbuchner J. 2011. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl. Environ. Microbiol. 77, 6419–6425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fuangthong M., Atichartpongkul S., Mongkolsuk S., Helmann J.D. 2001. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol. 183, 4134–4141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Volker U., Andersen K.K., Antelmann H., Devine K.M., Hecker M. 1998. One of two OsmC homologs in Bacillus subtilis is part of the SigB-dependent general stress regulon. J. Bacteriol. 180, 4212–4218.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Nguyen H.D., Nguyen Q.A., Ferreira R.C., Ferreira L.C.S., Tran L.T., Schumann W. 2005. Construction of plas-mid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid. 54, 241–248.

    Article  CAS  PubMed  Google Scholar 

  12. Paccez J.D., Luiz W.B., Sbrogio-Almeida M.E., Ferreira R.C., Schumann W., Ferreira L.C. 2006. Stable episomal expression system under control of a stress inducible promoter enhances the immunogenicity of Bacillus subtilis as a vector for antigen delivery. Vaccine. 24, 2935–2943.

    Article  CAS  PubMed  Google Scholar 

  13. Kim J.H., Wong S.L., Kim B.G. 2001. Optimization of staphylokinase production in Bacillus subtilis using inducible and constitutive promoters. Biotechnol. Bioprocess Eng. 6, 167–172.

    Article  CAS  Google Scholar 

  14. Ye R., Kim J.H., Kim B.G., Szarka S., Sihota E., Wong S.L. 1999. High-level secretory production of intact biologically active staphylokinase from Bacillus subtilis. Biotechnol. Bioeng. 62, 87–96.

    Article  CAS  PubMed  Google Scholar 

  15. Panahi R., Vasheghani-Farahani E., Shojaosadati S.A., Bambai B. 2014. Induction of Bacillus subtilis expression system using environmental stresses and glucose starvation. Ann. Microbiol. 64, 879–882.

    Article  CAS  Google Scholar 

  16. Helianti I., Nurhayati N., Ulfah M., Wahyuntari B., Setyahadi S. 2010. Constitutive high level expression of an endoxylanase gene from the newly isolated Bacillus subtilis AQ1 in Escherichia coli. J. Biomed. Biotechnol. 2010, 24–35.

    Article  Google Scholar 

  17. Phan T.T.P., Nguyen H.D., Schumann W. 2006. Novel plasmid-based expression vectors for intra- and extra-cellular production of recombinant proteins in Bacillus subtilis. Protein Expr. Purif. 46, 189–195.

    Article  CAS  PubMed  Google Scholar 

  18. Kunst F., Rapoport G. 1995. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol. 177, 2403–2407.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Huang H., Ridgway D., Gu T., Moo-Young M. 2004. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst. Eng. 27, 63–69.

    Article  CAS  PubMed  Google Scholar 

  20. Nagarajan D.R., Krishnan C. 2010. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Protein Expr. Purif. 70, 122–128.

    Article  CAS  PubMed  Google Scholar 

  21. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  22. Miller G.L. 1959. Use of dinitrosalycylic acid reagent for the determination of reducing sugars. Anal. Chem. 31, 208–218.

    Google Scholar 

  23. Bailey M.J., Biely P., Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270.

    Article  CAS  Google Scholar 

  24. Hecker M., Pane-Farre J., Volker U. 2007. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol. 61, 215–236.

    Article  CAS  PubMed  Google Scholar 

  25. Daniel A.S., Martin J., Vanat I., Whitehead T.R., Flint H.J. 1995. Expression of a cloned cellulase/xylanase gene from Prevotella ruminicola in Bacteroides vulgatus, Bacteroides uniformis, and Prevotella ruminicola. J. Appl. Bacteriol. 79, 417–424.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vasheghani-Farahani.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 6, pp. 970–976.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahi, R., Vasheghani-Farahani, E., Shojaosadati, S.A. et al. Auto-inducible expression system based on the SigB-dependent ohrB promoter in Bacillus subtilis . Mol Biol 48, 852–857 (2014). https://doi.org/10.1134/S0026893314060132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314060132

Keywords

Navigation