Skip to main content
Log in

Disordering of the Crystal Structure of Cellulose Under Mechanical Activation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The present paper describes the study of the effect of mechanochemical activation on the amorphization process of individual α-cellulose and native cellulose being a constituent part of the lignocellulosic material in the form of partially crystalline fibrils. In processing the powder X-ray diffraction data the following methods are used to determine the degree of crystallinity of cellulose: Segal’s, Rietveld’s, and Lorentzian deconvolution. It is demonstrated that mechanical activation of individual α-cellulose in an AGO-2 laboratory planetary ball mill with a shock-shear action results only in grinding and amorphization, while the degree of amorphization increases propotionally to the duration of the power supply. When α-cellulose is treated in an RM-20 flow-through centrifugal roller mill with a shear action, particle agglomeration is observed together with amorphization. When a lignocellulosic material (wheat straw) is treated in a centrifugal roller mill, considerable amorphization occurs only at high energies, and no particle agglomeration is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. O’Sullivan, Cellulose, 4, 173 (1997).

    Article  Google Scholar 

  2. A. Thygesen, J. Oddershede, H. Lilholt, A. B. Thomsen, and K. Stahl, Cellulose, 12, 563 (2005).

    Article  CAS  Google Scholar 

  3. N. Hausser, S. Marinkovic, and B. Estrine, Cellulose, 18, 1521 (2011).

    Article  CAS  Google Scholar 

  4. A. P. Sinitsyn, A. V. Gusakov, and V. M. Chernoglazov, Bioconversion of Cellulosic Materials: Study Guide, Publishing House of the Moscow State University, Moscow (1995).

    Google Scholar 

  5. L. T. Fan, Y.-H. Lee, and D. H. Beardmore, Biotechnol. Bioeng., 22, 177 (1980).

    Article  CAS  Google Scholar 

  6. A. Barakat, C. Mayer-Laigle, A. Solhy, R. A. D. Arancon, H. Vries, and R. Luque, RSC Adv., 4, 48109 (2014).

    Article  CAS  Google Scholar 

  7. L. Yuan, Z. Chen, Y. Zhu, X. Liu, H. Liao, and D. Chen, Appl. Biochem. Biotechnol., 167, 39 (2012).

    Article  CAS  Google Scholar 

  8. D. P. Koullas, P. Christakopoulos, D. Kekos, B. J. Macris, and E. G. Koukios, Biotechnol. Bioeng., 39, 113 (1992).

    Article  CAS  Google Scholar 

  9. G. G. D. Silva, M. Conturier, J.-G. Berrin, A. Buleon, and X. Rouau, Bioresour. Technol., 103, 192 (2012).

    Article  CAS  Google Scholar 

  10. E. M. Podgorbunskikh, A. L. Bychkov, and O. I. Lomovskii, Catal. Ind., 8, No. 3, 274 (2016).

    Article  Google Scholar 

  11. M. Ago, T. Endo, and K. Okajima, Polym. J., 39, No. 5, 435 (2007).

    Article  CAS  Google Scholar 

  12. A. L. Bychkov, V. A. Buchtoyarov, and O. L. Lomovsky, Cellul. Chem. Technol., 48, 545 (2014).

    CAS  Google Scholar 

  13. O. I. Lomovsky, A. L. Bychkov, and I. O. Lomovsky, in: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, S. I. Mussatto (ed.), Elsevier, Amsterdam (2016), pp. 23–55.

  14. L. Segal, J. J. Creely, A. E. Martin Jr., and C. M. Conrad, Tex. Res. J., 29, No. 10, 786 (1959).

    Article  CAS  Google Scholar 

  15. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 1 (2010).

    Article  Google Scholar 

  16. A. V. Obolenskaya, Z. P. El’nitskaya, and A. A. Leonovich, Laboratory Works on Chemistry of Wood and Cellulose [in Russian], Ekologiya, Moscow (1991).

    Google Scholar 

  17. A. D. French, Cellulose, 21, 885 (2014).

    Article  CAS  Google Scholar 

  18. Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, J. Am. Chem. Soc., 125, No. 47, 14300 (2003).

    Article  CAS  Google Scholar 

  19. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, No. 31, 9074 (2002).

    Article  CAS  Google Scholar 

  20. M. Wada, Y. Nishiyama, H. Chanzy, T. Forsyth, and P. Langan, Powder Diffr., 23, No. 2, 92 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Podgorbunskikh.

Additional information

Original Russian Text © 2018 E. M. Podgorbunskikh, A. L. Bychkov, N. V. Bulina, O. I. Lomovskii.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 1, pp. 204–211, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgorbunskikh, E.M., Bychkov, A.L., Bulina, N.V. et al. Disordering of the Crystal Structure of Cellulose Under Mechanical Activation. J Struct Chem 59, 201–208 (2018). https://doi.org/10.1134/S0022476618010328

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618010328

Keywords

Navigation