Skip to main content
Log in

Nonlinear Enhancement of Resonance Absorption at the Filamentation of a Mid-Infrared Pulse in High-Pressure Gases

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been found experimentally that the filamentation of a femtosecond pulse with a central wavelength of 1.3 µm in a mixture of nitrogen at a pressure of 30 bar and water vapor at a pressure of 2 mbar results in the redshift of the spectrum of the pulse and in the corresponding enhancement of resonance absorption at water lines near a wavelength of 1.35 µm. A replica of the resonance absorption band has been detected in the continuous spectrum of a pulse transmitted through the cell. The characteristic absorption lines of water detected experimentally correspond to the results of the numerical simulation of a three-dimensional nonstationary problem taking into account the resonance and nonresonance absorption in molecular gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, Can. J. Phys. 83, 863 (2005).

    Article  ADS  Google Scholar 

  2. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  3. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quantum Electron. 39, 205 (2009).

    Article  ADS  Google Scholar 

  4. S. L. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).

    Article  ADS  Google Scholar 

  5. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, Quantum Electron. 29, 911 (1999).

    Article  ADS  Google Scholar 

  6. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

    Article  ADS  Google Scholar 

  7. D. Pushkarev, E. Mitina, D. Uryupina, R. Volkov, A. Karabytov, and A. Savel’ev, Laser Phys. Lett. 15, 025401 (2018).

    Article  ADS  Google Scholar 

  8. S. V. Chekalin and V. P. Kandidov, Phys. Usp. 56, 123 (2013).

    Article  ADS  Google Scholar 

  9. B. Shim, S. E. Schrauth, and A. L. Gaeta, Opt. Express 19, 9118 (2011).

    Article  ADS  Google Scholar 

  10. D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, Opt. Lett. 37, 2268 (2012).

    Article  ADS  Google Scholar 

  11. E. O. Smetanina, V. Y. Fedorov, A. E. Dormidonov, and V. P. Kandidov, J. Phys.: Conf. Ser. 541, 012071 (2014).

    Google Scholar 

  12. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, S. Ališauskas, T. Flöry, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, Sci. Rep. 5, 8368 (2015).

    Article  Google Scholar 

  13. H. Liang, D. L. Weerawarne, P. Krogen, R. I. Grynko, C.-J. Lai, B. Shim, F. X. Kärtner, and K.-H. Hong, Optica 3, 678 (2016).

    Article  ADS  Google Scholar 

  14. S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, Nat. Photon. 13, 41 (2019).

    Article  ADS  Google Scholar 

  15. V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, and A. Pugžlys, Opt. Lett. 43, 2185 (2018).

    Article  ADS  Google Scholar 

  16. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Bejot, J. Kasparian, W. Jérôme, J.-P. Wolf, and A. Baltuška, Opt. Lett. 38, 3194 (2013).

    Article  ADS  Google Scholar 

  17. Y. Chen, F. Théberge, C. Marceau, H. Xu, N. Aközbek, O. Kosareva, and S. L. Chin, Appl. Phys. B 91, 219 (2008).

    Article  ADS  Google Scholar 

  18. D. Uryupina, N. Panov, M. Kurilova, A. Mazhorova, R. Volkov, S. Gorgutsa, O. Kosareva, and A. Savel’ev, Appl. Phys. B 110, 123 (2013).

    Article  ADS  Google Scholar 

  19. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Am. Inst. Phys., New York, 1992).

    Google Scholar 

  20. V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, Quantum Electron. 33, 69 (2003).

    Article  ADS  Google Scholar 

  21. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 83, 2938 (1999).

    Article  ADS  Google Scholar 

  22. O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, Opt. Lett. 22, 1332 (1997).

    Article  ADS  Google Scholar 

  23. N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, Phys. Rev. A 94, 041801 (2016).

    Article  ADS  Google Scholar 

  24. N. A. Panov, D. E. Shipilo, A. M. Saletsky, W. Liu, P. G. Polynkin, and O. G. Kosareva, Phys. Rev. A 100, 023832 (2019).

    Article  ADS  Google Scholar 

  25. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, Phys. Rev. Lett. 57, 2268 (1986).

    Article  ADS  Google Scholar 

  26. E. Mareev, V. Aleshkevich, F. Potemkin, V. Bagratashvili, N. Minaev, and V. Gordienko, Opt. Express 26, 13229 (2018).

    Article  ADS  Google Scholar 

  27. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673 (2004).

    Article  ADS  Google Scholar 

  28. D. Uryupina, M. Kurilova, A. Mazhorova, N. Panov, R. Volkov, S. Gorgutsa, O. Kosareva, A. Savel’ev, and S. L. Chin, J. Opt. Soc. Am. B 27, 667 (2010).

    Article  ADS  Google Scholar 

  29. N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, Appl. Phys. B 120, 383 (2015).

    Article  ADS  Google Scholar 

  30. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Opt. Lett. 31, 274 (2006).

    Article  ADS  Google Scholar 

  31. M. Volkov, D. Uryupina, N. Panov, O. Kosareva, M. Kurilova, R. Volkov, and A. Savel’ev, J. Phys. B 48, 094017 (2015).

    Article  ADS  Google Scholar 

  32. V. Y. Fedorov and V. P. Kandidov, Laser Phys. 18, 1530 (2008).

    Article  ADS  Google Scholar 

  33. S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, Opt. Lett. 40, 5794 (2015).

    Article  ADS  Google Scholar 

  34. J. M. Brown, A. Couairon, and M. B. Gaarde, Phys. Rev. A 97, 063421 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was performed at the unique research facility Multifunctional Femtosecond Laser Diagnostic Spectroscopic Complex.

Funding

This work was supported by the Russian Science Foundation, project no. 18-12-00422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Kosareva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kompanets, V.O., Shipilo, D.E., Nikolaeva, I.A. et al. Nonlinear Enhancement of Resonance Absorption at the Filamentation of a Mid-Infrared Pulse in High-Pressure Gases. Jetp Lett. 111, 31–35 (2020). https://doi.org/10.1134/S0021364020010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020010129

Navigation