Skip to main content
Log in

Advances in the Development of Betavoltaic Power Sources (A Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A detailed review of the literature on betavoltaic power sources is presented. The problems that exist within their manufacturing technology and the results of studies and development works that are currently in progress are examined, the structures and operation principles of betavoltaic power sources are summarized, and the main stages in designing them are described. The presented information can help one to study and understand the technology and methods used for designing available devices and to show the attained parameters, the existing limitations, and the opportunities for further improvement of designs of betavoltaic power sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adams, T.E. and Revankar, S.T., Proc. 122nd ASEE Annual Conference and Exposition, Seattle, WA, 2015, paper ID no. 13983, p. 26.1334.1.

  2. Revankar, S.T. and Adams, T.E., J. Energy Power Sources, 2014, vol. 1, no. 6, p. 321.

    Google Scholar 

  3. Ulmen, B., Desai, P.D., Moghaddam, S., Miley, G.H., and Masel, R.I., J. Radioanal. Nucl. Chem., 2009, vol. 282, p. 601. https://doi.org/10.1007/s10967-009-0320-3

    Article  Google Scholar 

  4. Ehrenberg, W., Proc. R. Soc., 1951, vol. 64, p. 424.

  5. Rappaport, P., Phys. Rev., 1953, vol. 93, p. 246.

    Article  ADS  Google Scholar 

  6. Rappaport, P., Loferski, J.J., and Linder, E.G., RCA Rev., 1956, vol. 17, p. 100.

    Google Scholar 

  7. Rappaport, P., US Patent 2745973A, 1956.

  8. Nejad, G.R.G., Rahmani, F., and Abaeiani, G.R., Appl. Radiat. Isot., 2014, vol. 86, p. 46. https://doi.org/10.1016/j.apradiso.2013.12.027

    Article  Google Scholar 

  9. Liu, Y., Tang, X., Xu, Z., Hong, L., and Chen, D., Appl. Radiat. Isot., 2014, vol. 94, p. 152. https://doi.org/10.1016/j.apradiso.2014.08.011

    Article  Google Scholar 

  10. Chandrashekhar, M.V.S., Thomas, C.I., Hui, Li., Spencer, M.G., and Lal, A., Appl. Phys. Lett., 2006, vol. 88, p. 033506. https://doi.org/10.1063/1.2166699

    Article  ADS  Google Scholar 

  11. Olsen, L.C., Review of Betavoltaic Energy Conversion, NASA TECDOC 19940006935, 1973, p. 256. https://archive.org/details/nasa_techdoc_19940006935. Accessed August 23, 2014.

  12. Klein, C.A., J. Appl. Phys., 1968, vol. 39, no. 4, p. 2029.

    Article  ADS  Google Scholar 

  13. Yacobi, B.G. and Holt, D.B., Cathodoluminescence Microscopy of Inorganic Solids, New York: Plenum Press, 1990.

    Book  Google Scholar 

  14. Polikarpov, M.A. and Yakimov, E.B., Semiconductors, 2015, vol. 49, no. 6, p. 746. https://doi.org/10.1134/S1063782615060202

    Article  ADS  Google Scholar 

  15. Shapiro, J., Radiation Protection: A Guide for Scientists, Regulators, and Physicians, La Editorial, UPR, 2002.

  16. Prelas, M.A., Weaver, C.L., Watermanna, M.L., Lukosi, E.D., Schott, R.J., and Wisniewski, D.A., Prog. Nucl. Energy, 2014, vol. 75, p. 117. https://doi.org/10.1016/j.pnucene.2014.04.007

    Article  Google Scholar 

  17. Ellis, B.L., Fritzsche, H., Patel, J., Lang, J., and Suppiah, S., Fusion Sci. Technol., 2017, vol. 71, p. 660. https://doi.org/10.1080/15361055.2017.1290952

    Article  Google Scholar 

  18. Hao Li, Yebing Liu, Rui Hu, Yuqing Yang, Guanquan Wang, Zhengkun Zhong, and Shunzhong Luo, Appl. Radiat. Isot., 2012, vol. 70, p. 2559. https://doi.org/10.1016/j.apradiso.2012.07.012

    Article  Google Scholar 

  19. Lazarenko, Yu.V., Pustovalov, A.A., and Shapovalov, V.P., Malogabaritnye yadernye istochniki elektricheskoi energii (Small-Size Nuclear Electric Energy Sources), Moscow: Energoatomizdat, 1992.

  20. Marukhin, O.V. and Pikulev, A.A., Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., 2000, no. 2, p. 55.

  21. Murashev, V.N., Mordkovich, V.N., Legotin, S.A., Rabinovich, O.I., and Krasnov, A.A., J. Nano- Electron.Phys., 2014, vol. 6, no. 4, p. 04012.

    Google Scholar 

  22. Olsen, L.C., Cabauy, P., and Elkind, B.J., Phys. Today, 2012, vol. 65, no. 12, p. 35. https://doi.org/10.1063/PT.3.1820

    Article  ADS  Google Scholar 

  23. Yun-peng Liu, Xiao-bin Tang, Zhi-heng Xu, Liang Hong, Hao Wang, Min Liu, and Da Chen, J. Radioanal. Nucl. Chem., 2015, vol. 304, p. 517. https://doi.org/10.1007/s10967-014-3879-2

    Article  Google Scholar 

  24. https://www.ioffe.ru/SVA/NSM/.

  25. Svintsov, A.A., Krasnov, A.A., Polikarpov, M.A., Polyakov, A.Y., and Yakimov, E.B., Appl. Radiat. Isot., 2018, vol. 137, p. 184. https://doi.org/10.1016/j.apradiso.2018.04.010

    Article  Google Scholar 

  26. Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J.R., Scanning Electron Microscopy and X-Ray Microanalysis, New York: Kluwer Academic/Plenum Publishers, 2003.

    Book  Google Scholar 

  27. Phua, P.C. and Ong, V.K.S., IEEE Trans. Electron Devices, 2002, vol. 49, no. 11, p. 2036. https://doi.org/10.1109/TED.2002.804703

    Article  ADS  Google Scholar 

  28. Guoping Zuo, Jianliang Zhou, and Guotu Ke, Appl. Radiat. Isot., 2013, vol. 82, p. 119. https://doi.org/10.1016/j.apradiso.2013.07.026

    Article  Google Scholar 

  29. Alam, T.R., Spencer, M.G., Prelas, M.A., and Pier-son, M.A., Int. J. Eng. Res., 2018, vol. 42, no. 7, p. 2564. https://doi.org/10.1002/er.4053

    Article  Google Scholar 

  30. Tang Xiao Bin, Ding Ding, Liu Yun Peng, and Chen Da, Sci. China: Technol. Sci., 2012, vol. 55, no 4, p. 990. https://doi.org/10.1007/s11431-012-4752-6

    Article  ADS  Google Scholar 

  31. Krasnov, A.A., Legotin, S.A., Omel’chenko, Yu.K., Didenko, S.I., Murashev, V.N., Rabinovich, O.I., Yurchuk, S.Yu., Yaromsky, V.P., and Popkova, A.V., J. Nano-Electron.Phys., 2015, vol. 7, no. 4, p. 04004.

    Google Scholar 

  32. Liu Yunpeng, Guo Xiao, Jin Zhangang, and Tang Xiaobin, Appl. Radiat. Isot., 2018, vol. 135, p. 47. https://doi.org/10.1016/j.apradiso.2018.01.017

    Article  Google Scholar 

  33. Hao Wang, Xiao-Bin Tang, Yun-Peng Liu, Zhi-Heng Xu, Min Liu, and Da Chen, Nucl. Instrum. Methods Phys. Res.,Sect. B, 2015, vol. 359, p. 36. https://doi.org/10.1016/j.nimb.2015.07.046

    Article  Google Scholar 

  34. Qiao, D.Y., Zheng, Y.W., Peng, G., Wang, Y.X., Bo, Z., Lin, Z., Guo, H., and Zhang, H., Chin. Phys. Lett., 2008, vol. 25, p. 3798. https://doi.org/10.1088/0256-307X/25/10/076

    Article  ADS  Google Scholar 

  35. Starkov, V.V., Legotin, S.A., Krasnov, A.A., Murashev, V.N., Omel’chenko, Yu.K., Rabinovich, O.I., and Laryushkin, A.S., J. Nano- Electron.Phys., 2015, vol. 7, no. 4, p. 04047.

    Google Scholar 

  36. Krasnov, A., Legotin, S., Kuzmina, K., Ershova, N., and Rogozev, B., Nucl. Eng. Technol., 2019, vol. 51, p. 1978. https://doi.org/10.1016/j.net.2019.06.003

    Article  Google Scholar 

  37. Jinkui Chu, Xianggao Piao, Limin Jian, and Hui Lin, J. Micro/Nanolithogr., MEMS, MOEMS, 2009, vol. 8, no. 2, p. 021180. https://doi.org/10.1117/1.3152000

    Article  Google Scholar 

  38. Liu, Y., Hu, R., Yang, Y., Wang, G., Luo, S., and Liu, N., Appl. Radiat. Isot., 2012, vol. 70, p. 438. https://doi.org/10.1016/j.apradiso.2011.10.013

    Article  Google Scholar 

  39. Gao, H., Luo, S., Zhang, H., Wang, H., and Fu, Z., Energy, 2013, vol. 51, p. 116. https://doi.org/10.1016/j.energy.2012.12.042

    Article  Google Scholar 

  40. Liu Yun Peng, Tang Xiao Bin, Xu Zhi Heng, Hong Liang, Wang Peng, and Chen Da, Sci. China: Technol. Sci., 2014, vol. 57, no. 1, p. 14. https://doi.org/10.1007/s11431-013-5413-0

    Article  ADS  Google Scholar 

  41. Sun, W., Kherani, N.P., Hirschman, K.D., Gadeken, L.L., and Fauchet, P.M., Adv. Mater., 2005, vol. 17, no. 10, p. 1230. https://doi.org/10.1002/adma.200401723

    Article  Google Scholar 

  42. Clarkson, J.P., Sun, W., Hirschman, K.D., Gadeken, L.L., and Fauchet, P.M., Phys. Status Solidi A, 2007, vol. 204, no. 5, p. 1536. https://doi.org/10.1002/pssa.200674417

    Article  ADS  Google Scholar 

  43. Dolgyi, A., Redko, S., Bandarenka, H., Shapel, A., and Bondarenko, V., Proc. PRiME2012, Honolulu, HI, abstract no. 359.

  44. Krasnov, A.A., Starkov, V.V., Legotin, S.A., Rabinovich, O.I., Didenko, S.I., Murashev, V.N., Cheverikin, V.V., Yakimov, E.B., Fedulova, N.A., Rogozev, B.I., and Laryushkin, A.S., Appl. Radiat. Isot., 2017, vol. 121, p. 71. https://doi.org/10.1016/j.apradiso.2016.12.019

    Article  Google Scholar 

  45. Rahmani, F. and Khosravinia, H., Radiat. Phys. Chem., 2016, vol. 125, p. 205. https://doi.org/10.1016/j.radphyschem.2016.04.012

    Article  ADS  Google Scholar 

  46. Yu-Min Liu, Jing-Bin Lu, Xiao-Yi Li, Xu Xu, Rui He, and Hui-Dong Wang, Nucl. Sci. Technol., 2018, vol. 29, p. 168. https://doi.org/10.1007/s41365-018-0494-x

    Article  Google Scholar 

  47. Xiao-Ying Li, Yong Ren, Xue-Jiao Chen, Da-Yong Qiao, and Wei-Zheng Yuan, J. Radioanal. Nucl. Chem., 2011, vol. 287, p. 173. https://doi.org/10.1007/s10967-010-0746-7

    Article  Google Scholar 

  48. Tin, S. and Lal, A., Proc. Power MEMS 2009, Washington, DC, December 1–4, 2009, p. 189.

  49. Li Da-Rang, Jiang Lan, Yin Jian-Hua, Tan Yuan-Yuan, and Lin Nai, Chin. Phys. Lett., 2012, vol. 29, no. 7, p. 078102. https://doi.org/10.1088/0256-307X/29/7/078102

    Article  ADS  Google Scholar 

  50. Haiyanag Chen, Lan Jiang, and Xuyuan Chen, J. Phys. D: Appl. Phys., 2011, vol. 44, p. 215303. https://doi.org/10.1088/0022-3727/44/21/215303

    Article  ADS  Google Scholar 

  51. Chen Hai-Yang, Jiang Lan, and Li Da-Rang, Chin. Phys. Lett., 2011, vol. 28, no. 5, p. 058101. https://doi.org/10.1088/0256-307X/28/5/058101

    Article  ADS  Google Scholar 

  52. Butera, S., Lioliou, G., and Barnett, A.M., Appl. Radiat. Isot., 2017, vol. 125, p. 42. https://doi.org/10.1016/j.apradiso.2017.04.002

    Article  Google Scholar 

  53. Munson, C.E., Gaimard, Q., Merghem, K., Sundaram, S., Rogers, D.J., de Sanoit, J., Voss, P.L., Ramdane, A., Salvestrini, J.P., and Ougazzaden, A., J. Phys. D: Appl. Phys., 2017, vol. 5, no. 3, p. 035101. https://doi.org/10.1088/1361-6463/aa9e41

    Article  Google Scholar 

  54. Hogan, K., Litz, M., and Shahedipour-Sandvik, F., Appl. Radiat. Isot., 2019, vol. 145, p. 154. https://doi.org/10.1016/j.apradiso.2018.12.032

    Article  Google Scholar 

  55. Tang XiaoBin, Liu YunPeng, Ding Ding, and Chen Da, Sci. China: Technol. Sci., 2012, vol. 55, p. 659. https://doi.org/10.1007/s11431-011-4739-8

    Article  ADS  Google Scholar 

  56. Li Feng Hua, Gao Xu, Yuan Yuan Lin, Yuan Jin She, and Lu Min, Sci. China: Technol. Sci., 2014, vol. 57, no. 1, p. 25. https://doi.org/10.1007/s11431-013-5422-z

    Article  ADS  Google Scholar 

  57. Min Lu, Guo-guang Zhang, Kai Fu, Guo-hao Yu, Dan Su, and Ji-Feng Hu, Energy Convers. Manage., 2011, vol. 52, p. 1955. https://doi.org/10.1016/j.enconman.2010.10.048

    Article  Google Scholar 

  58. Cheng Zai-Jun, San Hai-Sheng, Chen Xu-Yuan, Liu Bo, and Feng Zhi-Hong, Chin. Phys. Lett., 2011, vol. 28, no. 7, p. 078401. https://doi.org/10.1088/0256-307X/28/7/078401

    Article  ADS  Google Scholar 

  59. Look, D.C. and Molnar, P.J., Appl. Phys. Lett., 1997, vol. 70, p. 3377.

    Article  ADS  Google Scholar 

  60. Cheong, M.G., Kim, K.S., Oh, C.S., Namgung, N.W., Yang, W.G.M., Lim, K.Y., Suh, E.K., Nahm, K.S., Lee, H.J., Lim, D.H., and Yoshikawa, A., Appl. Phys. Lett., 2000, vol. 77, p. 2557.

    Article  ADS  Google Scholar 

  61. Bormashov, V., Troschiev, S., Volkov, A., Tarelkin, S., Korostylev, E., Golovanov, A., Kuznetsov, M., Teteruk, D., Kornilov, N., Terentiev, S., Buga, S., and Blank, V., Phys. Status Solidi A, 2015, vol. 212, no. 11, p. 2539. https://doi.org/10.1002/pssa.201532214

    Article  ADS  Google Scholar 

  62. Miley, G.H., Ulmen, B., Desai, P.D., Moghaddam, S., and Masel, R.I., Proc. 7th Int. Energy Conversion Engineering Conference, Denver, CO, August 2–5, 2009, p. 25. https://doi.org/10.2514/6.2009-4601

  63. Liu Yun Peng, Xu Zhi Heng, Wang Hao, and Tang Xiao Bin, Sci. China: Technol. Sci., 2017, vol. 60, p. 282. https://doi.org/10.1007/s11431-016-0505-x

    Article  ADS  Google Scholar 

  64. Zaitsev, S.I., Pavlov, V.N., Panchenko, V.Ya., Polikarpov, M.A., Svintsov, A.A., and Yakimov, E.B., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2014, vol. 8, no. 5, p. 843. https://doi.org/10.1134/S1027451014050231

    Article  Google Scholar 

  65. Da-Yong Qiao, Xue-Jiao Chen, Yong Ren, and Wei-Zheng Yuan, J. Microelectromech. Syst., 2011, vol. 20, no. 3, p. 685. https://doi.org/10.1109/JMEMS.2011.2127448

    Article  Google Scholar 

  66. Chen Haiyang, Li Darang, Yin Jianhua, and Cai Shengguo, J. Semicond., 2011, vol. 32, no. 9, p. 17. https://doi.org/10.1088/1674-4926/32/9/094009

    Article  Google Scholar 

  67. Chen Haiyang, Yin Jianhua, and Li Darang, J. Semicond., 2011, vol. 32, no 8, p. 084006. https://doi.org/10.1088/1674-4926/32/8/084006

    Article  Google Scholar 

  68. Wang Guan-Quan, Li Hao, and Lei Yi-Song, Nucl. Sci. Tech., 2014, vol. 25, p. 020403. https://doi.org/10.13538/j.1001-8042/nst.25.020403

    Article  Google Scholar 

  69. Zaijun Cheng, Xuyuan Chen, Haisheng San, Zhihong Feng, and Bo Liu, J. Micromech. Microeng., 2012, vol. 22, p. 074011. https://doi.org/10.1088/0960-1317/22/7/074011

    Article  ADS  Google Scholar 

  70. Kuruoğlu, N.A., Özdemir, O., and Bozkurt, K., Thin Solid Films, 2017, vol. 636, p. 746. https://doi.org/10.1016/j.tsf.2017.07.033

    Article  ADS  Google Scholar 

  71. Chandrashekhar, M.V.S., Duggirala, R., Spencer, M.G., and Lal, A., Appl. Phys. Lett., 2007, vol. 91, p. 053511. https://doi.org/10.1063/1.2767780

    Article  ADS  Google Scholar 

  72. Murashev, V.N., Legotin, S.A., Legotin, A.N., Mordkovich, V.N., and Krasnov, A.A., RF Patent 2539109C1, 2015.

  73. Nejad, G.R.G. and Rahmani, F., Appl. Radiat. Isot., 2016, vol. 107, p. 346. https://doi.org/10.1016/j.apradiso.2015.11.025

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-18-50177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Legotin.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, A.A., Legotin, S.A. Advances in the Development of Betavoltaic Power Sources (A Review). Instrum Exp Tech 63, 437–452 (2020). https://doi.org/10.1134/S0020441220040156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220040156

Navigation