Skip to main content
Log in

Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The modified rheological Vinogradov-Pokrovskii model is applied to solve the problem of the mathematical modeling of three-dimensional flow of a nonlinear viscoelastic fluid in a plane-parallel channel with an abrupt constriction. The discrete counterparts of the governing equations are obtained using the control volume method with the splitting in physical processes, while the numerical realization employs graphical processing units on the basis of the CUDA technology of parallel computations. The velocity and stress fields are calculated for two polyethylene specimens and the presence of circulation flow in the vicinity of the slot channel entry is noticed. The vortex dimensions considerably depend on the rheological parameters of the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Papanastasiou, L.E. Scriven, and C.W. Macosko, “An Integral Constitutive Equation for Mixed Flows: Viscoelastic Characterization,” J. Rheol. 27, 387 (1983).

    Article  ADS  Google Scholar 

  2. P. Olley, “An Adaptation of the Separable KBKZ Equation for Comparable Response in Planar and Axisymmetric Flows,” J. Non-Newtonian Fluid Mech. 95, 35 (2000).

    Article  MATH  Google Scholar 

  3. T.C.B. McLeish and R.G. Larson, “Molecular Constitutive Equations for a Class of Branched Polymers. The Pom-Pom Polymer,” J. Rheol. 42, 81 (1998).

    Article  ADS  Google Scholar 

  4. G.W.M. Peters, J.F.M. Schoonen, F.P.T. Baaijens, and H.E.H. Meijer, “On the Performance of Enhanced Constitutive Models for Polymer Melts in a Cross-Slot Flow,” J. Non-Newtonian Fluid Mech. 82, 387 (1999).

    Article  MATH  Google Scholar 

  5. W.M.H. Verbeeten, G.W.M. Peters, and F.P.T. Baaijens, “Differential Constitutive Equations for Polymer Melts: The Extended Pom-Pom Model,” J. Rheol. 45, 823 (2001).

    Article  ADS  Google Scholar 

  6. A.I. Leonov and A.N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman & Hall, London (1994).

    Book  Google Scholar 

  7. G.V. Pyshnograi, V.N. Pokrovskii, Yu.G. Yanovskii, I.F. Obraztsov, and Yu.A. Karnet, “Constitutive Equation for Nonlinear, Viscoelastic (Polymer) Media in the Zeroth Approximation with Respect to the Molecular Model Parameters and Consequences for Shear and Tension,” Dokl. Ross. Akad. Nauk 339, 612 (1994).

    Google Scholar 

  8. G.V. Pyshnograi, A.S. Gusev, and V.N. Pokrovskii, “Constitutive Equations for Weakly Entangled Linear Polymers,” J. Non-Newtonian Fluid Mech. 163, 17 (2009).

    Article  Google Scholar 

  9. V.N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, Springer, Berlin (2010).

    Book  Google Scholar 

  10. Yu.L. Kuznetsova, O.I. Skul’skii, and G.V. Pyshnograi, “Flow of a Nonlinear Viscoelastic Fluid in a Plane Channel under the Action of a Given Pressure Gradient,” Vychisl. Mekh. Sploshn. Sred 3(2), 55 (2010).

    Google Scholar 

  11. A.S. Gusev, M.A. Makarova, and G.V. Pyshnograi, “Mesoscopic Equation of State for Polymer Media and Description of the Dynamic Characteristics on its Basis,” Inzh.-Fiz. Zh. 78(5), 55 (2005).

    Google Scholar 

  12. Yu.A. Altukhov, V.S. Samoilov, G.V. Pyshnograi, and G.V. Pyshnograi, “Modeling of the 3D Velocity Profile of a Nonlinear Viscoelastic Fluid in a Channel of Square Cross-Section,” Mekh. Komp. Mater. Konstr. 18, 325 (2012).

    Google Scholar 

  13. Yu.A. Altukhov, G.V. Pyshnograi, and V.N. Pokrovskii, “On the Diffusion between Weakly and Strongly Entangled Linear Polymers,” J. Non-Newtonian Fluid Mech. 121, 73 (2004).

    Article  MATH  Google Scholar 

  14. V.N. Pokrovskii, Yu.A. Altukhov, and G.V. Pyshnograi, “The Mesoscopic Approach to the Dynamics of Polymer Melts: Consequences for the Constitutive Equation,” J. Non-Newtonian Fluid Mech. 76, 153 (1998).

    Article  MATH  Google Scholar 

  15. Yu.A. Altukhov, I.E. Golovicheva, and G.V. Pyshnograi, “Molecular Approach in Linear Polymer Dynamics: Theory and Numerical Experiment,” Fluid Dynamics 35(1), 1 (2000).

    Article  MATH  ADS  Google Scholar 

  16. Yu.A. Altukhov and G.V. Pyshnograi, “Entrance Flows of Linear Fluid Polymers in a 4:1 Channel,” Mekh. Komp. Mater. Konstr. No. 1, 16 (2001).

    Google Scholar 

  17. D. Hertel, R. Valette, and H. Münstedt, “Three-Dimensional Entrance Flow of a Low-Density Polyethylene (LDPE) and a Linear Low-Density Polyethylene (LLDPE) into a Slit Die,” J. Non-Newtonian Fluid Mech. 153, 82 (2008).

    Article  Google Scholar 

  18. D. Hertel and H. Münstedt, “Dependence of the Secondary Flow of a Low-Density Polyethylene on Processing Parameters as Investigated by Laser-Doppler Velocimetry,” J. Non-Newtonian Fluid Mech. 153, 73 (2008).

    Article  Google Scholar 

  19. E. Mitsoulis, M. Schwetz, and H. Münstedt, “Entry Flow of LDPE Melts in a Planar Contraction,” J. Non-Newtonian Fluid Mech. 111, 41 (2003).

    Article  Google Scholar 

  20. D.A. Merzlikina, P. Philip, R. Pivokonski, and G.V. Pyshnograi, “Multimode Rheological Model and Consequences for Simple Shear and Extension,” Mekh. Komp. Mater. Konstr. 19(2), 254 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Koshelev.

Additional information

Original Russian Text © K.B. Koshelev, G.V. Pyshnograi, M.Yu. Tolstykh, 2015, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2015, Vol. 50, No. 3, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshelev, K.B., Pyshnograi, G.V. & Tolstykh, M.Y. Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section. Fluid Dyn 50, 315–321 (2015). https://doi.org/10.1134/S0015462815030011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462815030011

Keywords

Navigation