Skip to main content
Log in

Computer Assessment of the Xenobiotic Metabolites Formation’s Probability in the Human Body

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Xenobiotics undergo biotransformation in the human body and the resulting metabolites may greatly differ in their physical, chemical, and biological properties from the initial substances or be toxic or reactive. An experimental study of xenobiotic biotransformation is challenging; designing computational prediction methods is therefore important. One major drawback of computational methods is that a large number of possible metabolites are generated, leading to a combinatorial explosion. The objective of this work was to select the criteria for optimizing the prediction of metabolites via the original web resource MetaTox (http://www.way2drug.com/MG), which is publicly available. The performance was compared for additive and multiplicative methods to assess the probability of metabolite formation; the additive approach was found to be superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. E. Wolff, Principles of Medicinal Chemistry, 4th ed. (Williams and Wilkins, Philadelphia, 1995).

    Google Scholar 

  2. C. Wermuth, The Practice of Medicinal Chemistry (Academic –Elsevier, 2008).

  3. Safety Testing of Drug Metabolites Guidance for Industry Safety Testing of Drug Metabolites Guidance for Industry (US FDA Center for Drug Evaluation and Research, 2016).

  4. G. N. Krasovsky, Yu. A. Rakhmanin, and N. A. Egorova, Extrapolation of Toxicological Data from Animals to Humans (Meditsina, Moscow, 2009) [in Russian].

    Google Scholar 

  5. V. D. Lakhno, Biophysics (Moscow) 56 (6), 1047 (2011).

    Article  Google Scholar 

  6. V. M. Bezhentsev, O. A. Tarasova, A. V. Dmitriev, et al., Russ. Chem. Rev. 85 (8), 854 (2016).

    Article  ADS  Google Scholar 

  7. J. Kirchmair, A. H. Göller, D. Lang, et al., Nat. Rev. Drug Discov. 14 (6), 387 (2015).

    Article  Google Scholar 

  8. F. Darvas, QSAR Environ. Toxicol. 2, 71 (1987).

    Google Scholar 

  9. G. Klopman, M. Dimayuga, and J. Talafous, J. Chem. Inf. Comput. Sci. 34 (6), 1320 (1994).

    Article  Google Scholar 

  10. C. A. Marchant, K. A. Briggs, and A. Long, Toxicol. Mech. Methods 18 (2–3), 177 (2008).

    Article  Google Scholar 

  11. J. Gao, L. B. M. Ellis, and L. P. Wackett, Nucleic Acids Res. 39 (2), 406 (2011).

    Article  Google Scholar 

  12. L. Ridder and M. Wagener, ChemMedChem 3 (5), 821 (2008).

    Article  Google Scholar 

  13. O. Mekenyan, S. Dmitrov, T. Pavlov, et al., Curr. Pharm. Des. 10 (11), 1273 (2004).

    Article  Google Scholar 

  14. C. de Bruyn Kops, C. Stork, M. Sicho, et al., Front. Chem. 7, 402 (2019).

    Article  ADS  Google Scholar 

  15. A. V. Rudik, V. M. Bezhentsev, A. V. Dmitriev, et al., J. Chem. Inf. Model. 57 (4), 638 (2017).

    Article  Google Scholar 

  16. A. Rudik, V. M. Bezhentsev, A. V. Dmitriev, et al., J. Bioinform. Comput. Biol. 17 (1), 1940001 (2019).

    Article  Google Scholar 

  17. A. Rudik, A. Dmitriev, A. Lagunin, et al., Bioinformatics 31(12), 2046 (2015).

    Article  Google Scholar 

  18. D. A. Filimonov, et al., Biomed. Chem. Res. Methods 1 (1), e00004 (2018).

    Article  Google Scholar 

  19. A. V. Rudik, A. V. Dmitriev, A. A. Lagunin, et al., J. Chem. Inf. Model. 54 (2), 498 (2014).

    Article  Google Scholar 

  20. D. S. Wishart, Y. D. Feunang, A. C. Guo, et al., Nucleic Acids Res. 46, D1074 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-15-00396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rudik.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonov, D.A., Rudik, A.V., Dmitriev, A.V. et al. Computer Assessment of the Xenobiotic Metabolites Formation’s Probability in the Human Body. BIOPHYSICS 65, 1023–1029 (2020). https://doi.org/10.1134/S0006350920060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920060044

Navigation