Skip to main content
Log in

Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Functional disruption and neuronal loss followed by progressive dysfunction of the nervous system underlies the pathogenesis of numerous disorders defined as “neurodegenerative diseases”. Multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system resulting in serious neurological dysfunctions and disability, is one of the most common neurodegenerative diseases. Recent studies suggest that disturbances in mitochondrial functioning are key factors leading to neurodegeneration. In this review, we consider data on mitochondrial dysfunctions in multiple sclerosis, which were obtained both with patients and with animal models. The contemporary data indicate that the axonal degeneration in multiple sclerosis largely results from the activation of Ca2+-dependent proteases and from misbalance of ion homeostasis caused by energy deficiency. The genetic studies analyzing association of mitochondrial DNA polymorphic variants in multiple sclerosis suggest the participation of mitochondrial genome variability in the development of this disease, although questions of the involvement of individual genomic variants are far from being resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

action potential

BBB:

blood–brain barrier

CNS:

central nervous system

EAE:

experimental autoimmune encephalomyelitis

ETC:

electron transport chain

MBP:

myelin basic protein

MS:

multiple sclerosis

mtDNA:

mitochondrial DNA

PPMS:

primary progressive multiple sclerosis

RRMS:

relapsing-remitting multiple sclerosis

ROS:

reactive oxygen species

SNP:

single nucleotide polymorphism

SPMS:

secondary progressive multiple sclerosis

References

  1. Rafael, H. (2014) Omental transplantation for neurodegen–erative diseases, Am. J. Neurodegener. Dis., 3, 50–63.

    PubMed  PubMed Central  Google Scholar 

  2. Burnside, S. W., and Hardingham, G. E. (2017) Transcriptional regulators of redox balance and other homeostatic processes with the potential to alter neurode–generative disease trajectory, Biochem. Soc. Trans., 45, 1295–1303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Karussis, D. (2014) The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review, J. Autoimmun., 48–49, 134–142.

    Google Scholar 

  4. Ellwardt, E., and Zipp, F. (2014) Molecular mechanisms linking neuroinflammation and neurodegeneration in MS, Exp. Neurol., 262, 8–17.

    Article  PubMed  CAS  Google Scholar 

  5. Dendrou, C. A., and Fugger, L. (2017) Immunomodula–tion in multiple sclerosis: promises and pitfalls, Curr. Opin. Immunol., 49, 37–43.

    Article  PubMed  CAS  Google Scholar 

  6. Heidker, R. M., Emerson, M. R., and LeVine, S. M. (2017) Metabolic pathways as possible therapeutic targets for pro–gressive multiple sclerosis, Neural. Regen. Res., 12, 1262–1267.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garcia–Escudero, V., Martin–Maestro, P., Perry, G., and Avila, J. (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease, Oxid. Med. Cell. Longev., 2013, 162152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Avetisyan, A. V., Samokhin, A. N., Alexandrova, I. Y., Zinovkin, R. A., Simonyan, R. A., and Bobkova, N. V. (2016) Mitochondrial dysfunction in neocortex and hip–pocampus of olfactory bulbectomized mice, a model of Alzheimer’s disease, Biochemistry (Moscow), 81, 615–623.

    Article  CAS  Google Scholar 

  9. Hang, L., Thundyil, J., and Lim, K. L. (2015) Mitochondrial dysfunction and Parkinson disease: a Parkin–AMPK alliance in neuroprotection, Ann. N. Y. Acad. Sci., 1350, 37–47.

    Article  PubMed  CAS  Google Scholar 

  10. Perfeito, R., Cunha–Oliveira, T., and Rego, A. C. (2013) Reprint of: Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease. Resemblance to the effect of amphetamine drugs of abuse, Free Radic. Biol. Med., 62, 186–201.

    Article  PubMed  CAS  Google Scholar 

  11. Carri, M. T., D’Ambrosi, N., and Cozzolino, M. (2017) Pathways to mitochondrial dysfunction in ALS pathogene–sis, Biochem. Biophys. Res. Commun., 483, 1187–1193.

    Article  PubMed  CAS  Google Scholar 

  12. Cozzolino, M., Ferri, A., Valle, C., and Carri, M. T. (2013) Mitochondria and ALS: implications from novel genes and pathways, Mol. Cell. Neurosci., 55, 44–49.

    Article  PubMed  CAS  Google Scholar 

  13. Polyzos, A. A., and McMurray, C. T. (2017) The chicken or the egg: mitochondrial dysfunction as a cause or conse–quence of toxicity in Huntington’s disease, Mech. Ageing Dev., 161, 181–197.

    Article  PubMed  CAS  Google Scholar 

  14. Ayala–Pena, S. (2013) Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis, Free Radic. Biol. Med., 62, 102–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dyall, S. D., Brown, M. T., and Johnson, P. J. (2004) Ancient invasions: from endosymbionts to organelles, Science, 304, 253–257.

    Article  PubMed  CAS  Google Scholar 

  16. Koonin, E. V. (2014) The Logic of Chance: The Nature and Origin of Biological Evolution [in Russian], Tsentrpoligraf, Moscow.

    Google Scholar 

  17. Hunt, R. J., and Bateman, J. M. (2017) Mitochondrial ret–rograde signaling in the nervous system, FEBS Lett., 592, 663–678.

    Article  PubMed  CAS  Google Scholar 

  18. Li, M. X., and Dewson, G. (2015) Mitochondria and apop–tosis: emerging concepts, F1000Prime Rep., 1, 7–42.

    Google Scholar 

  19. Rasola, A., and Bernardi, P. (2011) Mitochondrial perme–ability transition in Ca2+–dependent apoptosis and necrosis, Cell Calcium, 50, 222–233.

    Article  PubMed  CAS  Google Scholar 

  20. Mitra, K. (2013) Mitochondrial fission–fusion as an emerg–ing key regulator of cell proliferation and differentiation, Bioessays, 35, 955–964.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, Z. W., Cheng, J., Xu, F., Chen, Y. E., Du, J. B., Yuan, M., Zhu, F., Xu, X. C., and Yuan, S. (2011) Red blood cell extrudes nucleus and mitochondria against oxidative stress, IUBMB Life, 63, 560–565.

    Article  PubMed  CAS  Google Scholar 

  22. Uranova, N., Orlovskaya, D., Vikhreva, O., Zimina, I., Kolomeets, N., Vostrikov, V., and Rachmanova, V. (2001) Electron microscopy of oligodendroglia in severe mental illness, Brain Res. Bull., 55, 597–610.

    Article  PubMed  CAS  Google Scholar 

  23. Duran, H. E., Simsek–Duran, F., Oehninger, S. C., Jones, H. W., Jr., and Castora, F. J. (2011) The association of reproductive senescence with mitochondrial quantity, func–tion, and DNA integrity in human oocytes at different stages of maturation, Fertil. Steril., 96, 384–388.

    Article  PubMed  CAS  Google Scholar 

  24. Michel, S., Wanet, A., De Pauw, A., Rommelaere, G., Arnould, T., and Renard, P. (2012) Crosstalk between mito–chondrial (dys)function and mitochondrial abundance, J. Cell Physiol., 227, 2297–2310.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez–Enriquez, S., Kai, Y., Maldonado, E., Currin, R. T., and Lemasters, J. J. (2009) Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes, Autophagy, 5, 1099–1106.

    Article  PubMed  Google Scholar 

  26. Friedman, J. R., and Nunnari, J. (2014) Mitochondrial form and function, Nature, 505, 335–343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mazunin, I. O., Volodko, N. V., Starikovskaya, E. B., and Sukernik, R. I. (2010) Mitochondrial genome and human mitochondrial diseases, Mol. Biol., 44, 755–772.

    Article  CAS  Google Scholar 

  28. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organi–zation of the human mitochondrial genome, Nature, 290, 457–465.

    Article  PubMed  CAS  Google Scholar 

  29. Reed, J. C. (1998) Bcl–2 family proteins, Oncogene, 17, 3225–3236.

    Article  PubMed  Google Scholar 

  30. Wang, X. (2001) The expanding role of mitochondria in apoptosis, Genes Dev., 15, 2922–2933.

    PubMed  CAS  Google Scholar 

  31. Tait, S. W., and Green, D. R. (2010) Mitochondria and cell death: outer membrane permeabilization and beyond, Nat. Rev. Mol. Cell Biol., 11, 621–632.

    Article  PubMed  CAS  Google Scholar 

  32. Pena–Blanco, A., and Garcia–Saez, A. J. (2017) Bax, Bak and beyond–mitochondrial performance in apoptosis, FEBS J., 285, 416–431.

    Google Scholar 

  33. Hamacher–Brady, A., and Brady, N. R. (2015) Bax/Bak–dependent, Drp1–independent targeting of Smac X–linked inhibitor of apoptosis protein (XIAP) into inner mitochondr–ial compartments counteracts Smac/DIABLO–dependent effector caspase activation, J. Biol. Chem., 290, 22005–22018.

    PubMed  Google Scholar 

  34. Vande Walle, L., Lamkanfi, M., and Vandenabeele, P. (2008) The mitochondrial serine protease HtrA2/Omi: an overview, Cell Death Differ., 15, 453–460.

    Article  PubMed  CAS  Google Scholar 

  35. Jang, D. S., Penthala, N. R., Apostolov, E. O., Wang, X., Crooks, P. A., and Basnakian, A. G. (2014) Novel cytopro–tective inhibitors for apoptotic endonuclease G, DNA Cell Biol., 34, 92–100.

    Article  PubMed  CAS  Google Scholar 

  36. Ding, Z. J., Chen, X., Tang, X. X., Wang, X., Song, Y. L., Chen, X. D., Wang, J., Wang, R. F., Mi, W. J., Chen, F. Q., and Qiu, J. H. (2015) Apoptosis–inducing factor and cal–pain upregulation in glutamate–induced injury of rat spiral ganglion neurons, Mol. Med. Rep., 12, 1685–1692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bender, T., and Martinou, J. C. (2013) Where killers meet–permeabilization of the outer mitochondrial membrane during apoptosis, Cold Spring Harb. Perspect. Biol., 5, a011106.

    Google Scholar 

  38. Suhaili, S. H., Karimian, H., Stellato, M., Lee, T. H., and Aguilar, M. I. (2017) Mitochondrial outer membrane per–meabilization: a focus on the role of mitochondrial mem–brane structural organization, Biophys. Rev., 9, 443–457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zamzami, N., and Kroemer, G. (2001) The mitochondrion in apoptosis: how Pandora’s box opens, Nat. Rev. Mol. Cell. Biol., 2, 67–71.

    Article  PubMed  CAS  Google Scholar 

  40. Joseph, S. K., and Hajnoczky, G. (2007) IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond, Apoptosis, 12, 951–968.

    Article  PubMed  CAS  Google Scholar 

  41. Shoshan–Barmatz, V., Krelin, Y., and Shteinfer–Kuzmine, A. (2018) VDAC1 functions in Ca2+ homeostasis and cell life and death in health and disease, Cell Calcium, 69, 81–100.

    Article  PubMed  CAS  Google Scholar 

  42. De Stefani, D., Patron, M., and Rizzuto, R. (2015) Structure and function of the mitochondrial calcium uni–porter complex, Biochim. Biophys. Acta, 1853, 2006–2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Palty, R., Silverman, W. F., Hershfinkel, M., Caporale, T., Sensi, S. L., Parnis, J., Nolte, C., Fishman, D., Shoshan–Barmatz, V., Herrmann, S., Khananshvili, D., and Sekler, I. (2010) NCLX is an essential component of mitochondri–al Na+/Ca2+ exchange, Proc. Natl. Acad. Sci. USA, 107, 436–441.

    Article  PubMed  CAS  Google Scholar 

  44. De Stefani, D., Rizzuto, R., and Pozzan, T. (2016) Enjoy the trip: calcium in mitochondria back and forth, Annu. Rev. Biochem., 85, 161–192.

    Article  PubMed  CAS  Google Scholar 

  45. Glancy, B., and Balaban, R. S. (2012) Role of mitochondr–ial Ca2+ in the regulation of cellular energetics, Biochemistry, 51, 2959–2973.

    Article  PubMed  CAS  Google Scholar 

  46. Holt, I. J., and Reyes, A. (2012) Human mitochondrial DNA replication, Cold Spring Harb. Perspect. Biol., 4; doi: 10.1101/cshperspect.a012971.

  47. Gusev, E. I., Zavalishin, I. A., and Boiko, A. N. (2004) Multiple Sclerosis and Other Demyelinating Diseases [in Russian], Miklosh, Moscow.

    Google Scholar 

  48. Zavalishin, I. A., Piradov, M. A., Boiko, A. N., Nikitin, S. S., and Peresedova, A. V. (2014) Autoimmune Diseases in Neurology. Clinical Guidebook [in Russian], Zdorov’e Cheloveka, Moscow.

    Google Scholar 

  49. Steinman, L. (2001) Multiple sclerosis: a two–stage disease, Nat. Immunol., 2, 762–764.

    Article  PubMed  CAS  Google Scholar 

  50. Cunningham, C. (2013) Microglia and neurodegeneration: the role of systemic inflammation, Glia, 61, 71–90.

    Article  PubMed  Google Scholar 

  51. Von Budingen, H. C., Bar–Or, A., and Zamvil, S. S. (2011) B–cells in multiple sclerosis: connecting the dots, Curr. Opin. Immunol., 23, 713–720.

    Article  CAS  Google Scholar 

  52. Bjartmar, C., Wujek, J. R., and Trapp, B. D. (2003) Axonal loss in the pathology of MS: consequences for understand–ing the progressive phase of the disease, J. Neurol. Sci., 206, 165–171.

    Article  PubMed  CAS  Google Scholar 

  53. Bruck, W. (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage, J. Neurol., 5, 3–9.

    Article  CAS  Google Scholar 

  54. Howe, C. L. (2008) Immunological aspects of axon injury in multiple sclerosis, Curr. Top. Microbiol. Immunol., 318, 93–131.

    PubMed  CAS  Google Scholar 

  55. Pfueller, C. F., Brandt, A. U., Schubert, F., Bock, M., Walaszek, B., Waiczies, H., Schwenteck, T., Dorr, J., Bellmann–Strobl, J., Mohr, C., Weinges–Evers, N., Ittermann, B., Wuerfel, J. T., and Paul, F. (2011) Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis, PLoS One, 6, e18019.

    Google Scholar 

  56. Funfschilling, U., Supplie, L. M., Mahad, D., Boretius, S., Saab, A. S., Edgar, J., Brinkmann, B. G., Kassmann, C. M., Tzvetanova, I. D., Mobius, W., Diaz, F., Meijer, D., Suter, U., Hamprecht, B., Sereda, M. W., Moraes, C. T., Frahm, J., Goebbels, S., and Nave, K. A. (2012) Glycolytic oligodendrocytes maintain myelin and long–term axonal integrity, Nature, 485, 517–521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Frischer, J. M., Bramow, S., Dal–Bianco, A., Lucchinetti, C. F., Rauschka, H., Schmidbauer, M., Laursen, H., Sorensen, P. S., and Lassmann, H. (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains, Brain, 132, 1175–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  58. DeLuca, G. C., Ebers, G. C., and Esiri, M. M. (2004) Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts, Brain, 127, 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  59. Friese, M. A., Schattling, B., and Fugger, L. (2014) Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis, Nat. Rev. Neurol., 10, 225–238.

    Article  PubMed  CAS  Google Scholar 

  60. Mahad, D. H., Trapp, B. D., and Lassmann, H. (2015) Pathological mechanisms in progressive multiple sclerosis, Lancet Neurol., 14, 183–193.

    Article  PubMed  CAS  Google Scholar 

  61. Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., Gudz, T., Macklin, W. B., Lewis, D. A., Fox, R. J., Rudick, R., Mirnics, K., and Trapp, B. D. (2006) Mitochondrial dysfunction as a cause of axonal degenera–tion in multiple sclerosis patients, Ann. Neurol., 59, 478–489.

    Article  PubMed  CAS  Google Scholar 

  62. Campbell, G. R., Worrall, J. T., and Mahad, D. J. (2014) The central role of mitochondria in axonal degeneration in multiple sclerosis, Mult. Scler., 20, 1806–1813.

    Article  PubMed  CAS  Google Scholar 

  63. Mahad, D., Ziabreva, I., Lassmann, H., and Turnbull, D. (2008) Mitochondrial defects in acute multiple sclerosis lesions, Brain, 131, 1722–1735.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Witte, M. E., Bo, L., Rodenburg, R. J., Belien, J. A., Musters, R., Hazes, T., Wintjes, L. T., Smeitink, J. A., Geurts, J. J., de Vries, H. E., van der Valk, P., and van Horssen, J. (2009) Enhanced number and activity of mito–chondria in multiple sclerosis lesions, J. Pathol., 219, 193–204.

    Article  PubMed  Google Scholar 

  65. Campbell, G. R., Ziabreva, I., Reeve, A. K., Krishnan, K. J., Reynolds, R., Howell, O., Lassmann, H., Turnbull, D. M., and Mahad, D. J. (2011) Mitochondrial DNA dele–tions and neurodegeneration in multiple sclerosis, Ann. Neurol., 69, 481–492.

    Article  PubMed  CAS  Google Scholar 

  66. McDonough, J., Dutta, R., Gudz, T., Foell, S., Mirnics, K., and Trapp, B. D. (2003) Decreases in GABA and Mitochondrial Genes Are Implicated in MS Neuronal Pathology through Microarray Analysis of Postmortem MS Cortex, 213.12, Abstracts of the 33rd Ann. Meet. of Society for Neuroscience, New Orleans, LA.

    Google Scholar 

  67. Witte, M. E., Nijland, P. G., Drexhage, J. A., Gerritsen, W., Geerts, D., van Het Hof, B., Reijerkerk, A., de Vries, H. E., van der Valk, P., and van Horssen, J. (2013) Reduced expression of PGC–1α partly underlies mito–chondrial changes and correlates with neuronal loss in multiple sclerosis cortex, Acta Neuropathol., 125, 231–243.

    Article  PubMed  CAS  Google Scholar 

  68. Pandit, A., Vadnal, J., Houston, S., Freeman, E., and McDonough, J. (2009) Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis, J. Neurol. Sci., 279, 14–20.

    Article  PubMed  CAS  Google Scholar 

  69. Choi, I. Y., Lee, P., Adany, P., Hughes, A. J., Belliston, S., Denney, D. R., and Lynch, S. G. (2018) In vivo evidence of oxidative stress in brains of patients with progressive multi–ple sclerosis, Mult. Scler., 24, 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  70. Feng, J., Tao, T., Yan, W., Chen, C. S., and Qin, X. (2014) Curcumin inhibits mitochondrial injury and apoptosis from the early stage in EAE mice, Oxid. Med. Cell. Longev., 2014, 728751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Prinz, J., Karacivi, A., Stormanns, E. R., Recks, M. S., and Kuerten, S. (2016) Correction: time–dependent progres–sion of demyelination and axonal pathology in MP4–induced experimental autoimmune encephalomyelitis, PLoS One, 11, e0155197.

    Google Scholar 

  72. Recks, M. S., Stormanns, E. R., Bader, J., Arnhold, S., Addicks, K., and Kuerten, S. (2013) Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclero–sis, Clin. Immunol., 149, 32–45.

    Article  PubMed  CAS  Google Scholar 

  73. Sadeghian, M., Mastrolia, V., Rezaei Haddad, A., Mosley, A., Mullali, G., Schiza, D., Sajic, M., Hargreaves, I., Heales, S., Duchen, M. R., and Smith, K. J. (2016) Mitochondrial dysfunction is an important cause of neuro–logical deficits in an inflammatory model of multiple scle–rosis, Sci. Rep., 6, 33249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Talla, V., Yu, H., Chou, T. H., Porciatti, V., Chiodo, V., Boye, S. L., Hauswirth, W. W., Lewin, A. S., and Guy, J. (2013) NADH–dehydrogenase type–2 suppresses irre–versible visual loss and neurodegeneration in the EAE ani–mal model of MS, Mol. Ther., 21, 1876–1888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Talla, V., Koilkonda, R., Porciatti, V., Chiodo, V., Boye, S. L., Hauswirth, W. W., and Guy, J. (2015) Complex I sub–unit gene therapy with NDUFA6 ameliorates neurodegen–eration in EAE, Invest. Ophthalmol. Vis. Sci., 56, 1129–1140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Fetisova, E., Chernyak, B., Korshunova, G., Muntyan, M., and Skulachev, V. (2017) Mitochondria–targeted antioxi–dants as a prospective therapeutic strategy for multiple scle–rosis, Curr. Med. Chem., 24, 2086–2114.

    Article  PubMed  CAS  Google Scholar 

  77. Mao, P., Manczak, M., Shirendeb, U. P., and Reddy, P. H. (2013) MitoQ, a mitochondria–targeted antioxidant, delays disease progression and alleviates pathogenesis in an exper–imental autoimmune encephalomyelitis mouse model of multiple sclerosis, Biochim. Biophys. Acta, 1832, 2322–2231.

    Article  PubMed  CAS  Google Scholar 

  78. Acs, P., Selak, M. A., Komoly, S., and Kalman, B. (2013) Distribution of oligodendrocyte loss and mitochondrial toxicity in the cuprizone–induced experimental demyelina–tion model, J. Neuroimmunol., 262, 128–131.

    Article  PubMed  CAS  Google Scholar 

  79. Faizi, M., Salimi, A., Seydi, E., Naserzadeh, P., Kouhnavard, M., Rahimi, A., and Pourahmad, J. (2016) Toxicity of cuprizone a Cu2+ chelating agent on isolated mouse brain mitochondria: a justification for demyelina–tion and subsequent behavioral dysfunction, Toxicol. Mech. Methods, 26, 276–283.

    Article  PubMed  CAS  Google Scholar 

  80. Andrews, H., White, K., Thomson, C., Edgar, J., Bates, D., Griffiths, I., Turnbull, D., and Nichols, P. (2006) Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse, J. Neurosci. Res., 83, 1533–1539.

    Article  PubMed  CAS  Google Scholar 

  81. Readhead, C., Popko, B., Takahashi, N., Shine, H. D., Saavedra, R. A., Sidman, R. L., and Hood, L. (1987) Expression of a myelin basic protein gene in transgenic Shiverer mice: correction of the dysmyelinating phenotype, Cell, 48, 703–712.

    Article  PubMed  CAS  Google Scholar 

  82. Lassmann, H., and van Horssen, J. (2015) Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions, Biochim. Biophys. Acta, 1862, 506–510.

    Article  PubMed  CAS  Google Scholar 

  83. Broadwater, L., Pandit, A., Clements, R., Azzam, S., Vadnal, J., Sulak, M., Yong, V. W., Freeman, E. J., Gregory, R. B., and McDonough, J. (2011) Analysis of the mito–chondrial proteome in multiple sclerosis cortex, Biochim. Biophys. Acta, 1812, 630–641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Waxman, S. G. (2006) Ions, energy and axonal injury: towards a molecular neurology of multiple sclerosis, Trends Mol. Med., 12, 192–195.

    Article  PubMed  CAS  Google Scholar 

  85. Saab, A. S., Tzvetanova, I. D., and Nave, K. A. (2013) The role of myelin and oligodendrocytes in axonal energy metabolism, Curr. Opin. Neurobiol., 23, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  86. Campbell, G., and Mahad, D. J. (2018) Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis, FEBS Lett., 592, 1113–1121.

    Article  PubMed  CAS  Google Scholar 

  87. Trapp, B. D., and Stys, P. K. (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclero–sis, Lancet Neurol., 8, 280–291.

    Article  PubMed  CAS  Google Scholar 

  88. Kiryu–Seo, S., Ohno, N., Kidd, G. J., Komuro, H., and Trapp, B. D. (2010) Demyelination increases axonal sta–tionary mitochondrial size and the speed of axonal mito–chondrial transport, J. Neurosci., 30, 6658–6666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mahad, D. J., Ziabreva, I., Campbell, G., Lax, N., White, K., Hanson, P. S., Lassmann, H., and Turnbull, D. M. (2009) Mitochondrial changes within axons in multiple sclerosis, Brain, 132, 1161–1174.

    Article  PubMed  Google Scholar 

  90. Zambonin, J. L., Zhao, C., Ohno, N., Campbell, G. R., Engeham, S., Ziabreva, I., Schwarz, N., Lee, S. E., Frischer, J. M., Turnbull, D. M., Trapp, B. D., Lassmann, H., Franklin, R. J., and Mahad, D. J. (2011) Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis, Brain, 134, 1901–1913.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tsutsui, S., and Stys, P. K. (2013) Metabolic injury to axons and myelin, Exp. Neurol., 246, 26–34.

    Article  PubMed  CAS  Google Scholar 

  92. Favorova, O. O., Bashinskaya, V. V., Kulakova, O. O., Favorov, A. V., and Boiko, A. N. (2014) A genome–wide search for associations as an approach for analyzing the genetic architecture of polygenic diseases exemplified by multiple sclerosis, Mol. Biol., 48, 573–586.

    Article  CAS  Google Scholar 

  93. Oksenberg, J. R. (2013) Decoding multiple sclerosis: an update on genomics and future directions, Expert. Rev. Neurother., 13, 11–19.

    Article  PubMed  CAS  Google Scholar 

  94. Lin, R., Charlesworth, J., van der Mei, I., and Taylor, B. V. (2012) The genetics of multiple sclerosis, Pract. Neurol., 12, 279–288.

    Article  PubMed  Google Scholar 

  95. Baranzini, S. E., and Oksenberg, J. R. (2017) The genetics of multiple sclerosis: from 0 to 200 in 50 years, Trends Genet., 33, 960–970.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Bashinskaya, V. V., Kulakova, O. G., Boyko, A. N., Favorov, A. V., and Favorova, O. O. (2015) A review of genome–wide association studies for multiple sclerosis: classical and hypothesis–driven approaches, Hum. Genet., 134, 1143–1162.

    Article  PubMed  CAS  Google Scholar 

  97. Joo, J. H., Dorsey, F. C., Joshi, A., Hennessy–Walters, K. M., Rose, K. L., McCastlain, K., Zhang, J., Iyengar, R., Jung, C. H., Suen, D. F., Steeves, M. A., Yang, C. Y., Prater, S. M., Kim, D. H., Thompson, C. B., Youle, R. J., Ney, P. A., Cleveland, J. L., and Kundu, M. (2015) Hsp90–Cdc37 chaperone complex regulates Ulk1–and Atg13–mediated mitophagy, Mol. Cell, 43, 572–585.

    Article  CAS  Google Scholar 

  98. Soleimanpour, S. A., Gupta, A., Bakay, M., Ferrari, A. M., Groff, D. N., Fadista, J., Spruce, L. A., Kushner, J. A., Groop, L., Seeholzer, S. H., Kaufman, B. A., Hakonarson, H., and Stoffers, D. A. (2014) The diabetes susceptibility gene Clec16a regulates mitophagy, Cell, 157, 1577–1590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Morrish, F., and Hockenbery, D. (2014) MYC and mito–chondrial biogenesis, Cold Spring Harb. Perspect. Med., 4, a014225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hagenbuchner, J., and Ausserlechner, M. J. (2013) Mitochondria and FOXO3: breath or die, Front. Physiol., 4, 1–10.

    Article  CAS  Google Scholar 

  101. Rui, Y., and Mercedes, R. (2016) Mitochondrial Stat3, the need for design thinking, Int. J. Biol. Sci., 12, 532–544.

    Article  CAS  Google Scholar 

  102. Lill, C. M. (2014) Recent advances and future challenges in the genetics of multiple sclerosis, Front. Neurol., 5, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pinto, M., and Moraes, C. T. (2014) Mitochondrial genome changes and neurodegenerative diseases, Biochim. Biophys. Acta, 1842, 1198–1207.

    Article  PubMed  CAS  Google Scholar 

  104. Kennedy, S. R., Salk, J. J., Schmitt, M. W., and Loeb, L. A. (2013) Ultra–sensitive sequencing reveals an age–related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage, PLoS Genet., 9, e1003794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Payne, B. A., Wilson, I. J., Yu–Wai–Man, P., Coxhead, J., Deehan, D., Horvath, R., Taylor, R. W., Samuels, D. C., Santibanez–Koref, M., and Chinnery, P. F. (2013) Universal heteroplasmy of human mitochondrial DNA, Hum. Mol. Genet., 22, 384–390.

    Article  PubMed  CAS  Google Scholar 

  106. Pakendorf, B., and Stoneking, M. (2005) Mitochondrial DNA and human evolution, Annu. Rev. Genomics Hum. Genet., 6, 165–183.

    Article  PubMed  CAS  Google Scholar 

  107. Kalman, B., Li, S., Chatterjee, D., O’Connor, J., Voehl, M. R., Brown, M. D., and Alder, H. (1999) Large scale screening of the mitochondrial DNA reveals no pathogen–ic mutations but a haplotype associated with multiple scle–rosis in Caucasians, Acta Neurol. Scand., 99, 16–25.

    Article  PubMed  CAS  Google Scholar 

  108. Houshmand, M., Sanati, M. H., Babrzadeh, F., Ardalan, A., Teimori, M., Vakilian, M., Akuchekian, M., Farhud, D., and Lotfi, J. (2005) Population screening for asso–ciation of mitochondrial haplogroups BM, J, K and M with multiple sclerosis: interrelation between haplo–group J and MS in Persian patients, Mult. Scler., 11, 728–730.

    Article  CAS  Google Scholar 

  109. Hassani–Kumleh, H., Houshmand, M., Panahi, M. S., Riazi, G. H., Sanati, M. H., Gharagozli, K., and Ghabaee, M. (2006) Mitochondrial D–loop variation in Persian multiple sclerosis patients: K and A haplogroups as a risk factor, Cell Mol. Neurobiol., 26, 119–125.

    Article  PubMed  CAS  Google Scholar 

  110. Vyshkina, T., Sylvester, A., Sadiq, S., Bonilla, E., Canter, J. A., Perl, A., and Kalman, B. (2008) Association of com–mon mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus, Clin. Immunol., 129, 31–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yu, X., Koczan, D., Sulonen, A. M., Akkad, D. A., Kroner, A., Comabella, M., Costa, G., Corongiu, D., Goertsches, R., Camina–Tato, M., Thiesen, H. J., Nyland, H. I., Mork, S. J., Montalban, X., Rieckmann, P., Marrosu, M. G., Myhr, K. M., Epplen, J. T., Saarela, J., and Ibrahim, S. M. (2008) mtDNA nt13708A variant increases the risk of multiple sclerosis, PLoS One, 3, e1530.

    Google Scholar 

  112. Venkateswaran, S., Zheng, K., Sacchetti, M., Gagne, D., Arnold, D. L., Sadovnick, A. D., Scherer, S. W., Banwell, B., Bar–Or, A., and Simon, D. K. (2011) Mitochondrial DNA haplogroups and mutations in children with acquired central demyelination, Neurology, 76, 774–780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tranah, G. J., Santaniello, A., Caillier, S. J., D’Alfonso, S., Martinelli Boneschi, F., Hauser, S. L., and Oksenberg, J. R. (2015) Mitochondrial DNA sequence variation in multiple sclerosis, Neurology, 85, 325–330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Otaegui, D., Saenz, A., Martinez–Zabaleta, M., Villoslada, P., Fernandez–Manchola, I., Alvarez de Arcaya, A., Emparanza, J. I., and Lopez de Munain, A. (2004) Mitochondrial haplogroups in Basque multiple sclerosis patients, Mult. Scler., 10, 532–535.

    Article  PubMed  CAS  Google Scholar 

  115. Mihailova, S. M., Ivanova, M. I., Quin, L. M., and Naumova, E. J. (2007) Mitochondrial DNA variants in Bulgarian patients affected by multiple sclerosis, Eur. J. Neurol., 14, 44–47.

    Article  PubMed  CAS  Google Scholar 

  116. Kalman, B., Lublin, F. D., and Alder, H. (1996) Characterization of the mitochondrial DNA in patients with multiple sclerosis, J. Neurol. Sci., 140, 75–84.

    Article  PubMed  CAS  Google Scholar 

  117. Taylor, R. W., Chinnery, P. F., Bates, M. J., Jackson, M. J., Johnson, M. A., Andrews, R. M., and Turnbull, D. M. (1998) A novel mitochondrial DNA point mutation in the tRNA(Ile) gene: studies in a patient presenting with chronic progressive external ophthalmoplegia and multiple sclerosis, Biochem. Biophys. Res. Commun., 243, 47–51.

    Article  PubMed  CAS  Google Scholar 

  118. Slee, M., Finkemeyer, J., Krupa, M., Raghupathi, R., Gardner, J., Blumbergs, P., Agzarian, M., and Thyagarajan, D. (2011) A novel mitochondrial DNA dele–tion producing progressive external ophthalmoplegia asso–ciated with multiple sclerosis, J. Clin. Neurosci., 18, 1318–1324.

    Article  PubMed  CAS  Google Scholar 

  119. Wilichowski, E., Ohlenbusch, A., and Hanefeld, F. (1998) Characterization of the mitochondrial genome in child–hood multiple sclerosis. II. Multiple sclerosis without optic neuritis and LHON–associated genes, Neuropediatrics, 29, 307–312.

    Article  PubMed  CAS  Google Scholar 

  120. Kalman, B., Lublin, F. D., and Alder, H. (1995) Mitochondrial DNA mutations in multiple sclerosis, Mult. Scler., 1, 32–36.

    Article  PubMed  CAS  Google Scholar 

  121. Poursadegh Zonouzi, A., Ghorbian, S., Abkar, M., Poursadegh Zonouzi, A. A., and Azadi, A. (2014) Mitochondrial complex I gene variations; as a potential genetic risk factor in pathogenesis of multiple sclerosis, J. Neurol. Sci., 345, 220–223.

    Article  PubMed  CAS  Google Scholar 

  122. Andalib, S., Talebi, M., Sakhinia, E., Farhoudi, M., Sadeghi–Bazargani, H., and Gjedde, A. (2015) Mitochondrial DNA T4216C and A4917G variations in multiple sclerosis, J. Neurol. Sci., 356, 55–60.

    Article  PubMed  CAS  Google Scholar 

  123. Mayr–Wohlfart, U., Paulus, C., Henneberg, A., and Rodel, G. (1996) Mitochondrial DNA mutations in mul–tiple sclerosis patients with severe optic involvement, Acta. Neurol. Scand., 94, 167–171.

    Article  PubMed  Google Scholar 

  124. Andalib, S., Emamhadi, M., Yousefzadeh–Chabok, S., Salari, A., Sigaroudi, A. E., and Vafaee, M. S. (2016) MtDNA T4216C variation in multiple sclerosis: a system–atic review and meta–analysis, Acta Neurol. Belg., 116, 439–443.

    Article  PubMed  Google Scholar 

  125. Andalib, S., Talebi, M., Sakhinia, E., Farhoudi, M., Sadeghi–Bazargani, H., Masoudian, N., Vafaee, M. S., and Gjedde, A. (2017) No evidence of association between optic neuritis and secondary LHON mtDNA mutations in patients with multiple sclerosis, Mitochondrion, 36, 182–185.

    Article  PubMed  CAS  Google Scholar 

  126. Andalib, S., Talebi, M., Sakhinia, E., Farhoudi, M., Sadeghi–Bazargani, H., and Gjedde, A. (2015) Lack of association between mitochondrial DNA G15257A and G15812A variations and multiple sclerosis, J. Neurol. Sci., 356, 102–106.

    Article  PubMed  CAS  Google Scholar 

  127. Hudson, G., Gomez–Duran, A., Wilson, I. J., and Chinnery, P. F. (2014) Recent mitochondrial DNA muta–tions increase the risk of developing common late–onset human diseases, PLoS Genet., 10, e1004369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kozin.

Additional information

Original Russian Text © M. S. Kozin, O. G. Kulakova, O. O. Favorova, 2018, published in Biokhimiya, 2018, Vol. 83, No. 7, pp. 1002–1021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, M.S., Kulakova, O.G. & Favorova, O.O. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. Biochemistry Moscow 83, 813–830 (2018). https://doi.org/10.1134/S0006297918070052

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918070052

Keywords

Navigation