Skip to main content
Log in

Efficient adaptation of design parameters of derivative-free filters

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The paper deals with state estimation of nonlinear discrete time stochastic dynamic systems with a focus on derivative-free filters. Design parameters of the filters are treated and an efficient way for their adaptation is proposed. The efficiency is based on observing a degree of nonlinearity of the nonlinear state and measurement functions at the working point by means of a non-Gaussianity measure. The adaptation is executed only if the nonlinearity is severe and the design parameter adaptation may bring a significant improvement of the estimate quality. Otherwise the adaptation is switched off to keep computational complexity of the filter low. The developed algorithm is illustrated using a numerical example of bearings-only target tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasch, E. and Kahler, D., Multiresolution EO/IR Target Track and ID, Proc. Int. Conf. Information Fusion, 2005.

    Google Scholar 

  2. Haykin, S. and Arasaratnam, I., Adaptive Signal Processing, Hoboken: Wiley, 2010.

    Google Scholar 

  3. Isermann Rolf, Fault-Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance, Berlin: Springer, 2006.

    Google Scholar 

  4. Stepanov, O.A., Primenenie teorii nelineinoi filtratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory for Processing Navigation Information), St. Petersburg: Elektropribor, 2003.

    Google Scholar 

  5. Grachev, A.N. and Shuryigin, S.V., Metodika sinteza iteratsionnykh algoritmov sovmestnogo otsenivaniya parametrov i sostoyaniya lineinykh diskretnykh sistem (The Technique of Synthesis of Iterative Algorithms for Joint Estimation of the Parameters and State of Linear Discrete Systems), in Tr. VII Mezhd. konf. “Identifikatsiya sistem i zadachi upravleniya” (Proc. VII Int. Conf. “System Identification and Control Problems”), Moscow, 2008, 204–219.

    Google Scholar 

  6. Volynskii, M.A., Gurov, I.P., and Zakharov, A.S., Dynamic Analysis of the Signals in Optical Coherent Tomography by the Method of Nonlinear Kalman Filtering, J. Opt. Technol., 2008, vol. 75, no. 10, pp. 682–686.

    Article  Google Scholar 

  7. Koshaev, D.A., Kalman Filter-Based Multialternative Method for Fault Detection and Estimation, Autom. Remote Control, 2010, vol. 71, no. 5, pp. 790–802.

    Article  MathSciNet  MATH  Google Scholar 

  8. Stepanov, O.A. and Toropov, A.B., A Comparison of Linear and Nonlinear Optimal Estimators in Nonlinear Navigation Problems, Gyroscopy Navigation, 2010, vol. 1, no. 3, pp. 183–190.

    Article  Google Scholar 

  9. Stepanov, O.A. and Toropov, A.B., Linear Optimal Algorithms in Problems of Estimation with Nonlinear Measurements. Relation with the Kalman Type Algorithms, Izv. TulGU, Tekh. Vestn., 2012, no. 7, pp. 172–189.

    Google Scholar 

  10. Hmarskiy, P.A. and Solonar, A.S., Features of the UKF in the Polar Coordinates, Dokl. BGUIR, 2013, no. 2, pp. 79–86.

    Google Scholar 

  11. Stepanov, O.A. and Toropov, A.B., Application of the Monte Carlo Methods with Partial Analytical Integration Techniques to the Problem of Navigation System Aiding, in Proc. 20th St. Petersburg Int. Conf. on Integrated Navigation Systems, ICINS 2013, St. Petersburg, 2013, 298–301.

    Google Scholar 

  12. Berkovskii, N.A. and Stepanov, O.A., Error of Calculating the Optimal Bayesian Estimate Using the Monte Carlo Method in Nonlinear Problems, J. Comput. Syst. Sci. Int., 2013, vol. 52, no. 3, pp. 342–353.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mikhailov, N.V. and Koshaev, D.A., Navigation in a Geostationary Orbit Using GNSS Receiver Aided by the Satellite Dynamic Model, Gyroscopy Navigation, 2015, vol. 6, no. 2, pp. 87–100.

    Article  Google Scholar 

  14. Candy, J.V., Bayesian Signal Processing, Hoboken: Wiley, 2008.

    Google Scholar 

  15. Sorenson, H.W. and Alspach, D.L., Recursive Bayesian Estimation Using Gaussian Sums, Automatica, 1971, no. 7, pp. 465–479.

    Article  MathSciNet  MATH  Google Scholar 

  16. Anderson, B.D.O. and Moore, J.B., Optimal Filtering, Englewood Cliffs: Prentice Hall, 1979.

    MATH  Google Scholar 

  17. Sarmavuori, J. and Sarkka, S., Fourier–Hermite Kalman Filter, IEEE Trans. Automat. Control, 2012, vol. 57, no. 6, pp. 1511–1515.

    Article  MathSciNet  Google Scholar 

  18. Norgaard, M., Poulsen, N.K., and Ravn, O., New Developments in State Estimation for Nonlinear Systems, Automatica, 2000, vol. 36, no. 11, pp. 1627–1638.

    Article  MathSciNet  Google Scholar 

  19. Julier, S.J. and Uhlmann, J.K., Unscented Filtering and Nonlinear Estimation, IEEE Rev., 2004, vol. 92, no. 3, pp. 401–421.

    Article  Google Scholar 

  20. Ito, K. and Xiong, K., Gaussian Filters for Nonlinear Filtering Problems, IEEE Trans. Automat. Control, 2000, vol. 45, no. 5, pp. 910–927.

    Article  MathSciNet  MATH  Google Scholar 

  21. Arasaratnam, I. and Haykin, S., Cubature Kalman Filters, IEEE Trans. Automat. Control, 2009, vol. 54, no. 6, pp. 1254–1269.

    Article  MathSciNet  Google Scholar 

  22. Duník, J., Straka, O., and Šimandl, M., Stochastic Integration Filter, IEEE Trans. Automat. Control, 2013, vol. 58, no. 6, pp. 1561–1566.

    Article  MathSciNet  Google Scholar 

  23. Sakai, A. and Kuroda, Y., Discriminatively Trained Unscented Kalman Filter for Mobile Robot Localization, J. Adv. Res. Mechan. Eng., 2010, vol. 1, no. 3, pp. 153–161.

    Google Scholar 

  24. Duník, J., Šimandl, M., and Straka, O., Adaptive Choice of Scaling Parameter in Derivative-Free Local Filters, Proc. Int. Conf. Information Fusion, Edinburgh, Great Britain, 2010, 22416.

    Google Scholar 

  25. Turner, R. and Rasmussen, C.E., Model Based Learning of Sigma Points in Unscented Kalman Filter, Neurocomput., 2012, vol. 80, pp. 47–53.

    Article  Google Scholar 

  26. Duník, J., Šimandl, M., and Straka, O., Unscented Kalman Filter Aspects and Adaptive Setting of Scaling Parameter, IEEE Trans. Automat. Control, 2012, vol. 57, no. 9, pp. 2411–2416.

    Article  MathSciNet  Google Scholar 

  27. Chang, L., Hu, B., and Qin, F., Unscented Type Kalman Filter Limitation and Combination, IET Signal Process., 2013, vol. 7, no. 3, pp. 167–176.

    Article  MathSciNet  Google Scholar 

  28. Duník, J., Straka, O., and Šimandl, M., Sigma-Point Set Rotation in Unscented Kalman Filter: Analysis and Adaptation, Proc. 19 IFAC World Congress, Cape Town, South Africa, 2014, 5951–5956.

    Google Scholar 

  29. Duník, J., Straka, O., and Šimandl, M., On Sigma-Point Set Rotation in Derivative-Free Filters, Proc. Int. Conf. Information Fusion, Salamanca, 2014, 1–8.

    Google Scholar 

  30. Rhudy, M., Gu, Y., Gross, J., et al., Evaluation of Matrix Square Root Operations for UKF within a UAV GPS/INS Sensor Fusion Application, Int. J. Navigation Observation, 2012, no. 1, pp. 1–11.

    Google Scholar 

  31. Straka, O., Duník, J., Šimandl, M., et al., Aspects and Comparison of Matrix Decompositions in Unscented Kalman Filter, Proc. 2013 American Control Conf., Washington, USA, 2013.

    Google Scholar 

  32. Straka, O., Duník, J., and Šimandl, M., Unscented Kalman Filter with Controlled Adaptation, Proc. 16 IFAC Sympos. on System Identification (SYSID), Brussels, 2012, vol. 16, pp. 906–911.

    Google Scholar 

  33. Šimandl, M. and Duník, J., Derivative-Free Estimation Methods New Results and Performance Analysis, Automatica, 2009, vol. 45, no. 7, pp. 1749–1757.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zarei, J., Shokri, E., and Karimi, H.R., Convergence Analysis of Cubature Kalman Filter, Eur. Control Conf. (ECC), Strasbourg, 2014, 1367–1372.

    Google Scholar 

  35. Julier, S.J., Uhlmann, J.K., and Durrant-Whyte, H.F., A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators, IEEE Trans. Automat. Control, 2000, vol. 45, no. 3, pp. 477–482.

    Article  MathSciNet  MATH  Google Scholar 

  36. Jia, B., Xin, M., and Cheng, Y., Sparse Gauss–Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation, J. Guidance, Control, Dynamics, 2011, vol. 27, no. 2, pp. 367–379.

    Article  Google Scholar 

  37. Stroud, A.H., Approximate Calculation of Multiple Integrals, Englewood Cliffs: Prentice Hall, 1971.

    MATH  Google Scholar 

  38. Meyer, C.D., Matrix Analysis and Applied Linear Algebra, Philadelphia: SIAM, 2000.

    Book  MATH  Google Scholar 

  39. Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Boston: Artech House, 2013, 2nd ed.

    Google Scholar 

  40. Straka, O., Duník, J., and Šimandl, M., Unscented Kalman Filter with Advanced Adaptation of Scaling Parameter, Automatica, 2014, vol. 5, no. 10, pp. 2657–2664.

    Article  Google Scholar 

  41. Straka, O., Duník, J., and Šimandl, M., Scaling Parameter in Unscented Transformation Analysis and Specification, Proc. 2012 American Control Conf., Montreal, Canada, 2012.

    Google Scholar 

  42. Walter, É. and Pronzato, L., Identification of Parametric Models from Experimental Data, New York: Springer, 1997.

    MATH  Google Scholar 

  43. Li, X.R., Measure of Nonlinearity for Stochastic Systems, Proc. 15 Int. Conf. Information Fusion, Singapore, 2012.

    Google Scholar 

  44. Jones, E., Scalzo, M., Bubalo, A., et al., Measures of Nonlinearity for Single Target Tracking Problem, in Proc. SPIE, Signal Processing, Sensor Fusion, and Target Recognition, Orlando, Florida, USA, 2011.

    Google Scholar 

  45. Duník, J., Straka, O., and Šimandl, M., Nonlinearity and non-Gaussianity Measures for Stochastic Dynamic Systems, Proc. 16 Int. Conf. Information Fusion, Istanbul, 2013.

    Google Scholar 

  46. Brewer, J.W., Kronecker Products and Matrix Calculus in System Theory, IEEE Trans. Circ. Syst., 1978, vol. 25, no. 9, pp. 772–781.

    Article  MathSciNet  MATH  Google Scholar 

  47. Genz, A. and Monahan, J., A Stochastic Algorithm for High-Dimensional Integrals over Unbounded Regions with Gaussian Weight J. Comput. Appl. Math., 1999, vol. 112, no. 1, pp. 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  48. Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter Particle Filters for Tracking Applications, Boston: Artech House, 2004.

    MATH  Google Scholar 

  49. Bar-Shalom, Y., Li, X.R., and Kirubarajan, T., Estimation with Applications to Tracking and Navigation Theory Algorithms and Software, New York: Wiley, 2001.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Straka.

Additional information

Original Russian Text © M. Šimandl, O. Straka, J. Duník, 2016, published in Avtomatika i Telemekhanika, 2016, No. 2, pp. 94–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimandl, M., Straka, O. & Duník, J. Efficient adaptation of design parameters of derivative-free filters. Autom Remote Control 77, 261–276 (2016). https://doi.org/10.1134/S0005117916020041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916020041

Keywords

Navigation