Skip to main content
Log in

Microbial desulfurization of motor fuel

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Deep desulfurization of oil and its fractions is currently performed by hydration at high temperature and hydrogen pressure, which makes the process rather expensive. Searches for alternative modes for desulfurization, among which is biodesulfurization, are intensely in progress. In this review, the following subjects are discussed: microorganisms capable of desulfurizing petroleum products, mechanisms of their activity, achievements in the field of process development, and disadvantages of the method. The existing level of knowledge is insufficient for immediate implementation of an industrial biotechnological process for sulfur elimination from oil and motor fuel and it can only be regarded as a medium-term (10–15 years) prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADB:

absolutely dry biomass

BDS:

biocatalytic desulfurization

BT:

benzothiophene

DBT:

dibenzothiophene

HDS:

hydrodesulfurization process

ODS:

oxidative desulfurization

ppm:

parts per million

References

  1. Swaty, T.E., Hydrocarbon Processing, 2005, vol. 84, pp. 35–46.

    Google Scholar 

  2. Kilbane, J.J., Curr. Opinion. Biotechnol., 2006, vol. 17, pp. 305–314.

    Article  CAS  Google Scholar 

  3. Kilmane, J.J. and Borgne, S., in Petroleum Biotechnology Development and Perspective, Vazyuez-Duhalt, R. and Quintero-Romirez, X., Eds., Amsterdam: Elsevier, 2004, pp. 29–65.

    Google Scholar 

  4. Aliburi, M., Ghorkishi, M., and Aghabozog, M.R., J. Supercrit. Fluids, 2009, vol. 49, pp. 239–248.

    Article  Google Scholar 

  5. Deshpande, A., Bassi, A., and Prakash, A., Fuel, 2005, vol. 85, pp. 28–34.

    Google Scholar 

  6. Jane, D., Zhang, Y., Haj, S., and Erkey, N., Int. J. Hydrogen Energy, 2005, vol. 30, pp. 1287–1293.

    Article  Google Scholar 

  7. Wang, S., Wang, H., Lin, Y., and Wang, Z., Fuel, 2007, vol. 86, pp. 2747–2753.

    Article  CAS  Google Scholar 

  8. Zhand, S.G., Zhang, Q.L., and Zhang, Z.C., Ind. Eng. Chem. Res., 2004, vol. 43, pp. 614–622.

    Article  Google Scholar 

  9. Lin, L., Zhang, Y., and Kong, Y., Fuel, 2009, vol. 88, pp. 1799–1809.

    Article  CAS  Google Scholar 

  10. Mohebali, G. and Ball, A.S., Microbilogy, 2008, vol. 154, pp. 2169–2183.

    Article  CAS  Google Scholar 

  11. Le Borgne, Q.S. and Quintero, P., Fuel Proc. Technol., 2003, vol. 81, pp. 155–169.

    Article  Google Scholar 

  12. Chen, H., Yu-Bei, C., and Li, Z.W., Biores. Technol., 2009, vol. 100, P. 2085–2087.

    Article  CAS  Google Scholar 

  13. Denome, S.A., Oldfield, C.L., Nash, J., and Young, K.D., J. Bacteriol., 1994, vol. 176, pp. 6707–6716.

    CAS  PubMed  Google Scholar 

  14. Durate, G.F., Rosado, A.S., and Seldin, L., Appl. Environ. Microbiol., 2001, vol. 67, pp. 1052–1062.

    Article  Google Scholar 

  15. Li, F.L., Xu, P., Ma, C.Q., Luo, L.L., and Wang, X.S., FEMS Microbiol. Lett., 2003, vol. 223, pp. 301–307.

    Article  CAS  PubMed  Google Scholar 

  16. Onaka, T., Konishi, J., Yshii, Y., and Muruhashi, K., J. Biosci. Bioeng., 2001, vol. 92, pp. 193–196.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, M.D., Chen, H., Chen, J.M., and Shi, Y., Biotechnol. Lett., 2006, vol. 28, pp. 1175–1179.

    Article  PubMed  Google Scholar 

  18. Kirimura, K., Furna, T., Nashii, Y., Kino, K., and Usami, S., J. Biosci. Bioeng., 2001, vol. 91, pp. 262–266.

    Article  CAS  PubMed  Google Scholar 

  19. Darzinas, A. and Mrachko, G., WO 9845446, A1, 1988.

  20. Omori, T., Monna, L., and Saki, Y., Kodama, T., Appl. Environ. Microbiol., 1992, vol. 58, pp. 911–915.

    CAS  PubMed  Google Scholar 

  21. Monticello, D.J., Curr. Opinion Biotechnol., 2000, vol. 11, pp. 540–546.

    Article  CAS  Google Scholar 

  22. Yu, B., Xu, P., Shi, Q., and Ma, C., Appl. Environ. Microbiol., 2006, vol. 72, pp. 54–58.

    Article  CAS  PubMed  Google Scholar 

  23. Caro, A., Leton, P., Garcia-Calvo, E., and Setti, L., Fuel, 2007, vol. 86, pp. 2632–2636.

    Article  CAS  Google Scholar 

  24. Alves, L., Salquero, R., Rodrignes, C., Mesquita, E., Matos, J., and Girio, J., Appl. Biochem. Biotechnol., 2005, vol. 120, pp. 199–208.

    Article  CAS  PubMed  Google Scholar 

  25. Gunam, I., Yaku, B.W., Hirano, M., Yamamura, K., Tomita, F., Sone, T., and Asano, K., J. Biosci. Bioeng., 2006, vol. 101, pp. 322–327.

    Article  CAS  PubMed  Google Scholar 

  26. Lei, B. and Tu, S., J. Bacteriol., 1996, vol. 178, pp. 5699–5705.

    CAS  PubMed  Google Scholar 

  27. Gallardo, M., Ferrandez, A., de Lorenzo, V., Garcia, J.L., and Diaz, E., J. Bacteriol., 1997, vol. 179, pp. 7156–1760.

    CAS  PubMed  Google Scholar 

  28. Serbolisca, L., de Ferra, F., and Margarit, I., Appl. Microtiol. Biotechnol., 1999, vol. 52, pp. 122–126.

    Article  CAS  Google Scholar 

  29. Kertesz, M.A., FEMS Mecrobiol. Rev., 2000, vol. 24, pp. 135–175.

    CAS  Google Scholar 

  30. Ghobin, S., Jianmin, X., Huaijing, Z., and Huizhon, J., J. Chem. Technol. Biotechnol., 2005, vol. 80, pp. 420–424.

    Article  Google Scholar 

  31. Chen, H., Zhang, W., Cai, Y., Zhang, Y., and Li, W., BIores. Technol., 2008, vol. 99, pp. 6928–6933.

    Article  CAS  Google Scholar 

  32. Shavandi, M., Sadeghizadeh, M., Zomorodipur, A., and Khajeh, K., Biores. Technol., 2009, vol. 100, pp. 475–479.

    Article  CAS  Google Scholar 

  33. Ma, T., Li, G., Li, Y., Liang, F., and Liu, R., Biotechnol. Lett., 2006, vol. 28, pp. 1095–1100.

    Article  CAS  PubMed  Google Scholar 

  34. Tao, F., Yu, B., Xu, P., and Ma, C.Q., Appl. Environ. Microbiol., 2006, vol. 72, pp. 4604–4609.

    Article  CAS  PubMed  Google Scholar 

  35. Li, G., Ma, Q., Li, S., Li, H., Liang, F., and Liu, R.L., Biosci. Biotechnol. Biochem., 2007, vol. 71, pp. 849–854.

    Article  CAS  PubMed  Google Scholar 

  36. Konishi, M., Kishimoto, M., Omasa, T., Katakura, Y., Shioya, S., Ohtake, H., J. Biosci. Bioeng., 2005, vol. 99, pp. 259–263.

    Article  CAS  PubMed  Google Scholar 

  37. Ohshiro, T., Hine, Y., and Izumi, Y., FEMS Microbiol. Letts., 1994, vol. 118, pp. 341–344.

    Article  CAS  Google Scholar 

  38. Gray, K.A., Pogrebinsky, O.S., Marchko, G.T., Lei, X., Monticello, D.J., Squires, C.H., Nat. Biotechnol., 1996, vol. 14, pp. 1705–1709.

    Article  CAS  PubMed  Google Scholar 

  39. Gray, K.A., Squires, C.H., and Monticello, D.J., US Patent No. 5 846 813, C10G, 1998.

  40. Calan, B., Diaz, E., and Garcia, J.L., Environ. Microbiol., 2000, vol. 2, pp. 684–694.

    Google Scholar 

  41. Yan, H., Sun, X., Xu, Q., Ma, Z., Xiao, C., and Jun, N., J. Environ. Sci. (China), 2008, vol. 20, pp. 613–618.

    CAS  Google Scholar 

  42. Ohshiro, T., Hirata, T., and Izumi, Y., FEMS Microbiol. Letts., 1996, vol. 142, pp. 65–70.

    Article  CAS  Google Scholar 

  43. Lee, M.K., Senius, J.D., and Grossman, M.J,. Appl. Environ. Microbiol., 1995, vol. 61, pp. 4362–4366.

    CAS  PubMed  Google Scholar 

  44. Kibane, J.J., WO 9325637 A1, G10G32/00, 1994.

  45. Kayser, K.J., Belaga-Jones, B.A., Jackowski, K., Odusan, O., and Kilbane, J.J., J. Gen. Microbiol., 1993, vol. 139, pp. 3123–3129.

    CAS  Google Scholar 

  46. Monticello, D.J., US Patent No. 5510265, C10G, 1996.

  47. Solemani, M., Bassi, A., and Margaritas, A., Biotechnol. Advan., 2007, vol. 25, pp. 570–596.

    Article  Google Scholar 

  48. Mohebali, G., Ball, A.S., Kaytash, A., and Rasekh, B., Arch. Microbiol., 2007, vol. 153, pp. 1573–1581.

    CAS  Google Scholar 

  49. Marzona, M., Pessione, E., Martino, D., Guinta, C., Fuel Process Technol, 1997, vol. 52, pp. 199–205.

    Article  CAS  Google Scholar 

  50. Sandip, B.P., Kilbane, J.J., and Webster, D.A., J. Chem. Technol. Biotechnol., 1997, vol. 69, pp. 100–106.

    Article  Google Scholar 

  51. Yang, Y.Hu., Zhao, S., and Wang, P.C.K.Lan., Marison, J. Biochem. Eng., 2007, vol. 37, pp. 212–218.

    Article  CAS  Google Scholar 

  52. Lee, L.S., Bae, H., Rye, H.W., Cho, K.S., and Cgang, Y.K., Biotechnol. Prog., 2005, vol. 21, pp. 781–785.

    Article  CAS  PubMed  Google Scholar 

  53. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Maruhashi, K., and Tanaka, A., Appl. Microbiol. Biotechnol., 2001, vol. 53, pp. 374–378.

    Article  Google Scholar 

  54. Nunn, D., The Biocatalytic Desulfurization Project: DOE Contract no. FC26-02NT15340, Diversa Petro Star, 2006.

  55. Vazquez-Duhalt, K., Torrez, E., Valderrama, B., and Le Borgne, S., Energy Fuels, 2002, vol. 16, pp. 1239–1250.

    Article  CAS  Google Scholar 

  56. Kaufman, B.N., Harkins, J.B., Radrignez, M., Tsouris, C., Selvaraj, P.T., and Murphy, S.E., Fuel Proc. Technol., 1997, vol. 52, pp. 127–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Debabov.

Additional information

Original Russian Text © V.G. Debabov, 2009, published in Biotekhnologiya, 2009, No. 6, pp. 8–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debabov, V.G. Microbial desulfurization of motor fuel. Appl Biochem Microbiol 46, 733–738 (2010). https://doi.org/10.1134/S0003683810080016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683810080016

Key words

Navigation