Skip to main content
Log in

Joint Analysis of Anomalies of Different Geophysical Fields, Recorded from Space before Strong Earthquakes in California

  • USING SPACE-BASED INFORMATION ABOUT THE EARTH SPACE MONITORING OF NATURAL DISASTERS
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Results are presented from using satellite data to study anomalies of different geophysical fields due to the interaction of the lithosphere, atmosphere, and ionosphere. The anomalies are mid- and short-term precursors of strong earthquakes in California that occurred on July 4 and 5, 2019 (M = 6.4 and M = 7.1). Precursory changes in the lithosphere are analyzed using lineament system characteristics obtained by processing satellite imagery (Terra/Aqua satellites and MODIS instrument), along with variations in the Earth’s surface temperature (the Aqua satellite and the AIRS instrument). Fluctuations in the temperature of the near-surface atmospheric layer are studied to detect atmospheric anomalies during preparation of seismic events, as are fluctuations in the air temperature now at an altitude of 1000 hPa and changes in outgoing longwave radiation recorded by the AIRS instrument on the Aqua satellite. Variations in the ionospheric electron density in the F2-layer maximum are studied with GPS data to reveal ionospheric anomalies during the precursors and occurrence of earthquakes. Joint analysis of anomalies in different geophysical fields, identified via satellite monitoring, allow precursory changes in the lithosphere to be detected a month before strong earthquakes. Precursory changes in the atmosphere and ionosphere can be detected 3–6 days and 3–5 or 10 days before earthquakes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Acker, J.G. and Leptoukh, G., Online analysis enhances use of NASA earth science data, EOS, Trans. Am. Geophys. Union, 2007, vol. 88, no. 2, pp. 14–17.

    Article  Google Scholar 

  2. Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A., and Jin, S., Anomalous seismo-LAI variations potentially associated with the 2017 M w = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data, Adv. Space Res., 2019, vol. 64, pp. 143–158.

    Article  Google Scholar 

  3. Akopian, S.Ts., Bondur, V.G., and Rogozhin, E.A., Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 32–51. https://doi.org/10.1134/S1069351317010025

    Article  Google Scholar 

  4. Amos, C.B., Brownlee, S.J., Hood, D.H., Fisher, G.B., Burgmann, R., Renne, P.R., and Jayko, A.S., Chronology of tectonic, geomorphic, and volcanic interactions and the tempo of fault slip near Little Lake, California, Geol. Soc. Am. Bull., 2013, vol. 125, pp. 1187–1202.

    Article  Google Scholar 

  5. Andrianov, V.A. and Smirnov, V.M., Determination of the altitude profile of the electron concentration of the Earth’s ionosphere from two-frequency measurements of radio signals from artificial earth satellites, Radiotekh. Elektron., 1993, vol. 38, no. 7, pp. 1326–1335.

    Google Scholar 

  6. Bennett, R.A., Wernicke, B.P., Niemi, N.A., Friedrich, A.M., and Davis, J.L., Contemporary strain rates in the northern Basin and Range Province from GPS data, Tectonics, 2003, vol. 22, 1008. https://doi.org/10.1029/2001TC001355

    Article  Google Scholar 

  7. Bondur, V. and Kuznetsova, L., Satellite monitoring of seismic hazard area geodynamics using the method of lineament analysis, in Proc. 31st Int. Symp. Remote Sensing of Environment (ISRSE-2005), St. Petersburg, 2005, pp. 376–379.

  8. Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl. Earth Sci., 2005a, vol. 403, no. 5, pp. 736–740.

    Google Scholar 

  9. Bondur, V. and Smirnov, V., Monitoring of ionosphere variations during the preparation and realization of earthquakes using satellite navigation system data, Proc. 31st Int. Symp. Remote Sensing of Environment (ISRSE-2005), St. Petersburg, 2005b, pp. 372–375.

  10. Bondur, V.G. and Voronova, O.S., Variations in outgoing longwave radiation during the preparation and occurrence of strong earthquakes in Russia in 2008 and 2009, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2012, no. 1, pp. 79–85.

  11. Bondur, V.G. and Zverev, A.T., A method of earthquake forecast based on the lineament analysis of satellite images, Dokl. Earth Sci., 2005a, vol. 402, no. 4, pp. 561–567.

    Google Scholar 

  12. Bondur, V.G. and Zverev, A.T., Satellite method of earthquake forecast based on the lineament analysis of system dynamics, Issled. Zemli Kosmosa, 2005b, no. 3, pp. 37–52.

  13. Bondur, V.G. and Zverev, A.T., Lineament system formation mechanisms recorded in space images during the monitoring of seismic hazard areas, Issled. Zemli Kosmosa, 2007, no. 1, pp. 47–56.

  14. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., Nechaev, Yu.V., Steblov, G.M., and Shalimov, S.L., Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, Dokl. Earth Sci., 2007, vol. 414, no. 4, pp. 666–669.

    Article  Google Scholar 

  15. Bondur, V.G., Krapivin, V.F., and Savinykh, V.P., Monitoring i prognozirovanie prirodnykh katastrof (Monitoring and Forecasting of Natural Disasters), Moscow: Nauchnyi mir, 2009.

  16. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., and Nechaev, Yu.V., Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: The example of Southern California, Dokl. Earth Sci., 2010, vol. 430, pp. 147–150.

    Article  Google Scholar 

  17. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., Large scale interaction of seismically active tectonic provinces: The example of Southern California, Dokl. Earth Sci., 2016a, vol. 466, no. 5, pp. 1813–186. https://doi.org/10.1134/S1028334X16020100

    Article  Google Scholar 

  18. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., and Rodkin, M.V., The evolution of the stress state in Southern California based on the geomechanical model and current seismicity, Izv., Phys. Solid Earth, 2016b, vol. 52, no. 3, pp. 117–128. https://doi.org/10.1134/S1069351316010043

    Article  Google Scholar 

  19. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S., Systematization of ionospheric, geodynamic, and thermal precursors of strong (M ≥ 6) earthquakes detected from space, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1172–1185. https://doi.org/10.1134/S0001433818090475

    Article  Google Scholar 

  20. Bondur, V.G., Zverev, A.T., and Gaponova, E.V., Precursor variability of lineament systems detected using satellite images during strong earthquakes, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 9, pp. 1283–1291. https://doi.org/10.1134/S0001433819090123

    Article  Google Scholar 

  21. Bondur, V.G., Zverev, A.T., Gaponova, E.V., and Zima, A.L., Space Methods of Studying the Precursor Cycle Dynamics of the Lineament System before the Preparation of Earthquakes, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1266–1282.

    Article  Google Scholar 

  22. Bondur, V.G., Gokhberg, M.B., Garagash, I.A., and Alekseev, D.A., A local anomaly of the stress state of the Earth’s crust before the strong earthquake (M = 7.1) of July 5, 2019, in the area of Ridgecrest (Southern California), Dokl. Earth Sci., 2020, vol. 490, no. 1, pp. 13–17. https://doi.org/10.1134/S1028334X20010018

    Article  Google Scholar 

  23. Cherepanova, E.V., Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S., Satellite monitoring of seismic zones based on earthquakes precursors analysis: Central Italy earthquake August 2016 case study, in Proc. Int. Multidisciplinary Scientific GeoConference SGEM, 2018, vol. 18, no. 2, pp. 385–394.

  24. De Santis, A., Marchetti, D., Spogli, L., Cianchini, G., Pavón-Carrasco, F.J., Franceschi, G.D., Di Giovambattista, R., Perrone, L., Qamili, E., Cesaroni, C., De Santis, A., Ippolito, A., Piscini, A., Campuzano, S.A., Sabbagh, D., Amoruso, L., Carbone, M., Santoro, F., Abbattista, C., and Drimaco, D., Magnetic field and electron density data analysis from swarm satellites searching for ionospheric effects by great earthquakes: 12 case studies from 2015 to 2016, Atmosphere, 2019, vol. 10, no. 7, id 371.

  25. Dobrovolsky, I.P., Zubkov, S.I., and Miachkin, V.I., Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 1979, vol. 117, pp. 1025–1044.

    Article  Google Scholar 

  26. Economic Losses, Poverty and Disasters 1998–2017, Report from Centre for Research on the Epidemiology of Disasters, UN Office for Disaster Risk Reduction, 2018. https://doi.org/10.13140/RG.2.2.35610.08643.

  27. Gaponova, E.V., Zverev, A.T., and Tsidilina, M.N., Detecting lineament system anomalies during strong 6.4 and 7.1 earthquakes in California from satellite imagery, Issled. Zemli Kosmosa, 2019, no. 6, pp. 36–47.

  28. He, L. and Heki, K., Ionospheric anomalies immediately before Mw 7.0–8.0 earthquakes, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 8659–8678. https://doi.org/10.1002/2017JA024012

    Article  Google Scholar 

  29. Hearty, T., Savtchenko, A., Theobald, M., Ding, F., Esfandiari, E., and Vollmer, B., Readme document for AIRS version 006 products, Readme, NASA GES DISC Goddard Earth Sci. Data and Inf. Serv. Cent., Greenbelt, Md. 2013.

    Google Scholar 

  30. Jiao, Z.-H., Zhao, J., and Shan, X., Pre-seismic anomalies from optical satellite observations: A review, Nat. Hazards Earth Syst. Sci., 2018, vol. 18, pp. 1013–1036. https://doi.org/10.5194/nhess-18-1013-2018

    Article  Google Scholar 

  31. Kats, Ya.G., Poletaev, A.I., and Rumyantseva, E.F., Osnovy lineamentnoi tektoniki (Basics of Lineament Tectonics), Moscow: Nedra, 1986.

  32. Kissin, I.G., On the system approach in the problem of forecasting the earthquakes, Izv., Phys. Solid Earth, 2013, vol. 49, no. 4, pp. 587–600. https://doi.org/10.1134/S1069351313040058

    Article  Google Scholar 

  33. Liperovsky, V.A., Pokhotelov, O.A., and Shalimov, S.L., Ionosfernye predvestniki zemletryasenii (Ionospheric Precursors of Earthquakes), Moscow: Nauka, 1992.

  34. Liperovsky, V.A., Pokhotelov, O.A., Liperovskaya, E.V., and Meister, C.-V., Physical models of coupling in the lithosphere–atmosphere–ionosphere system before earthquakes, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 6, pp. 795–806.

  35. Marchetti, D. and Akhoondzadeh, M., Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw = 8.2) earthquake of 8 September 2017, Adv. Space Res., 2018, vol. 62, no. 3, pp. 614–623. https://doi.org/10.1016/j.asr.2018.04.043

    Article  Google Scholar 

  36. Molchan, G. and Keilis-Borok, V., Seismology earthquake prediction: Probabilistic aspect, Geophys. J. Int., 2008, vol. 173, pp. 1012–1017.

    Article  Google Scholar 

  37. Ouzounov, D., Liu, D., Kang, C., Cervone, G., Kafatos, M., and Taylor, P., Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics, 2007, vol. 431, pp. 211–220.

    Article  Google Scholar 

  38. Ouzounov, D., Pulinets, S., Hattori, K., and Taylor, P., Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, Wiley, 2018. https://doi.org/10.1002/9781119156949.

  39. Pulinets, S.A. and Boyarchuk, K.A., Ionospheric Precursors of Earthquakes, Berlin: Springer, 2004.

    Google Scholar 

  40. Pulinets, S.A., Ouzounov, D., Ciraolo, L., Singh, R., Cervone, G., Leyva, A., Dunajecka, M., Karelin, A.V., Boyarchuk, K.A., and Kotsarenko, A., Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003, Ann. Geophys., 2006, vol. 24, pp. 835–849. https://doi.org/10.5194/angeo-24-835-2006

    Article  Google Scholar 

  41. Pulinets, S.A., Bondur, V.G., Tsidilina, M.N., and Gaponova, M.V., Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 2, pp. 231–242.

  42. Pulinets, S.A., Ouzounov, D.P., Karelin, A.V., and Davidenko, D.V., Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 540–558.

  43. Smirnov, V.M., Bondur, V.G., and Smirnova, E.V., Ionospheric disturbances during of the thsunamigenic earthquake on navigation system data, in Asian Association on Remote Sensing: 26th Asian Conference on Remote Sensing and 2nd Asian Space Conference (ACRS2005), AARS, 2005, vol. 3, pp. 1487–1494.

  44. Smirnov, V.M., Smirnova, E.V., Tsidilina, M.N., and Gaponova, M.V., Seismo-ionospheric variations during strong earthquakes based on the example of the 2010 earthquake in Chile, Cosmic Res., 2018, vol. 56, no. 4, pp. 310–318. https://doi.org/10.1134/S0010952518040068

    Article  Google Scholar 

  45. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.

  46. Xiong, P., Shen, X.H., Bi, Y.X., Kang, C.L., Chen, L.Z., Jing, F., and Chen, Y., Study of outgoing longwave radiation anomalies associated with Haiti earthquake, Nat. Hazards Earth Syst. Sci., 2010, vol. 10, pp. 2169–2178. https://doi.org/10.5194/nhess-10-2169-2010

    Article  Google Scholar 

  47. Zlatopolskii, A.A., New LESSA technology resources and digital terrain map analysis. Methodology, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011, vol. 8, no. 3, pp. 38–46.

    Google Scholar 

Download references

Funding

This work was performed as part of State Task no. AAAA-A19-119081390037-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Tsidilina, M.N., Gaponova, E.V. et al. Joint Analysis of Anomalies of Different Geophysical Fields, Recorded from Space before Strong Earthquakes in California. Izv. Atmos. Ocean. Phys. 56, 1502–1519 (2020). https://doi.org/10.1134/S000143382012035X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382012035X

Keywords

Navigation