Skip to main content
Log in

Chiral selection in supercoiling and wrapping of DNA

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

This paper gives an account of our recent studies on the mechanisms for chiral selection in super-coiling and wrapping of DNA. We first present a compact model of double-stranded DNA (Model 1), which consists of two elastic chains that mutually intertwine in a right-handed manner to form a double-stranded helix. Numerical analysis of this model suggests an intrinsic propensity of DNA to writhe in the left direction upon bending. Based on this asymmetric elasticity of DNA, we present a further simplified model of DNA (Model 2), which is a single-chained homopolymer with the propensity to writhe in the left direction upon bending. This simplified model is incorporated into a Langevin dynamics study to explore the origin of the uniform left-handed wrapping of DNA around a nucleosome core particle in nature. We finally show that the propensity of DNA to writhe in the left direction upon bending gives rise to the selective left-handed wrapping, provided that the size of the core particle is appropriate. This result suggests the fundamental significance of the asymmetric elasticity of helical biopolymers in their structural dynamics and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science (Washington, D. C.) 265, 1599 (1994).

    Article  CAS  Google Scholar 

  2. C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, Biophys. J. 78, 1965 (2000).

    Article  CAS  Google Scholar 

  3. F. B. Fuller, Proc. Natl. Acad. Sci. U. S. A. 68, 815 (1971).

    Article  CAS  Google Scholar 

  4. M. Bohn and D. W. Heermann, J. Chem. Phys. 132, 044904 (2010).

    Article  Google Scholar 

  5. M. Peyrard, Nonlinearity 17, R1 (2004).

    Article  Google Scholar 

  6. L. V. Yakushevich, Nonlinear Physics of DNA (Wiley, Chichester, 1998).

    Google Scholar 

  7. K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, Phys. Rev. Lett. 76, 3029 (1996).

    Article  CAS  Google Scholar 

  8. M. K. Krotova, V. V. Vasilevskaya, N. Makita, K. Yoshikawa, and A. R. Khokhlov, Phys. Rev. Lett. 105, 128302 (2010).

    Article  CAS  Google Scholar 

  9. M. Tanaka, J. Phys.: Condens. Matter 16, S2127 (2004).

    Article  CAS  Google Scholar 

  10. K. Besteman, K. Van Eijk and S. G. Lemay, Nature Phys. 3, 641 (2007).

    Article  CAS  Google Scholar 

  11. H. Schiessel, J. Phys.: Condens. Matter 15, R699 (2003).

    Article  CAS  Google Scholar 

  12. M. Depken and H. Schiessel, Biophys. J. 96, 777 (2009).

    Article  CAS  Google Scholar 

  13. G. Arya and T. Schlick, Proc. Natl. Acad. Sci. U. S. A. 103, 16236 (2006).

    Article  CAS  Google Scholar 

  14. G. Arya, Q. Zhang, and T. Schlick, Biophys. J. 91, 133 (2006).

    Article  CAS  Google Scholar 

  15. J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R. Losick, Molecular Biology of the Cell, 5th ed. (Pearson Education, San Francisco, 2008).

    Google Scholar 

  16. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Gene, 6th ed. (Garland Science, Taylor & Francis, New York, 2008).

    Google Scholar 

  17. T. R. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette, Biophys. J. 74, 2016 (1998).

    Article  CAS  Google Scholar 

  18. J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, Proc. Natl. Acad. Sci. U. S. A. 95 14152 (1998).

    Article  CAS  Google Scholar 

  19. S. Neukirch, Phys. Rev. Lett. 93, 198107 (2004).

    Article  Google Scholar 

  20. K. Besteman, S. Hage, N. H. Dekker, and S. G. Lemay, Phys. Rev. Lett. 98, 058103 (2007).

    Article  CAS  Google Scholar 

  21. J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, Nature (London) 442, 836 (2006).

    Article  CAS  Google Scholar 

  22. T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, and V. Croquette, Phys. Rev. Lett. 96, 178102 (2006).

    Article  Google Scholar 

  23. J. F. Marko and E. D. Siggia, Macromolecules 27, 981 (1994).

    Article  CAS  Google Scholar 

  24. I. M. Kuli, D. Andrienko, and M. Deserno, Europhys. Lett. 67, 418 (2004).

    Article  Google Scholar 

  25. Y. S. Velichko, K. Yoshikawa, A. R. Khokhlov, Biomacromolecules 1, 459 (2000).

    Article  CAS  Google Scholar 

  26. A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 84, 2537 (2000).

    Article  CAS  Google Scholar 

  27. A. G. Cherstvy, J. Phys. Chem. B 112, 12585 (2008).

    Article  CAS  Google Scholar 

  28. K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Nature (London) 389, 251 (1997).

    Article  CAS  Google Scholar 

  29. T. Sakaue, K. Yoshikawa, S. H. Yoshimura, and K. Takeyasu, Phys. Rev. Lett. 87, 078105 (2001).

    Article  CAS  Google Scholar 

  30. T. Sakaue and H. Löwen, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 70, 021801 (2004).

    Article  Google Scholar 

  31. F. Robert, M. Douziech, D. Forget, J.-M. Egly, J. Greenblatt, Z. F. Burton, and B. Coulombe, Mol. Cell 2, 341 (1998).

    Article  CAS  Google Scholar 

  32. I. M. Kuli and H. Schiessel, Phys. Rev. Lett. 92, 228101 (2004).

    Article  Google Scholar 

  33. S. Mihardja, A. J. Spakowitz, Y. Zhang, and C. Bustamante, Proc. Natl. Acad. Sci. U. S. A. 103, 15871 (2006).

    Article  CAS  Google Scholar 

  34. Y. Higuchi, T. Sakaue, and K. Yoshikawa, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 82, 031909 (2010).

    Article  Google Scholar 

  35. Y. S. Velichko, K. Yoshikawa, A. R. Khokhlov, Comput. Phys. Commun. 146, 122 (2002).

    Article  CAS  Google Scholar 

  36. I. V. Dobrovolskaia, M. Kenward, and G. Arya, Biophys. J. 99, 3355 (2010).

    Article  CAS  Google Scholar 

  37. H. Schiessel, Eur. Phys. J. E 19, 251 (2006).

    Article  CAS  Google Scholar 

  38. L. Mollazadeh-Beidokhti, F. Mohammad-Rafiee, and H. Schiessel, Biophys. J. 96, 4387 (2009).

    Article  CAS  Google Scholar 

  39. A. A. Zinchenko, K. Yoshikawa, and D. Baigl, Phys. Rev. Lett. 95, 228101 (2005).

    Article  Google Scholar 

  40. A. A. Zinchenko, T. Sakaue, S. Araki, K. Yoshikawa, and D. Baigl, J. Phys. Chem. B 111, 3019 (2007).

    Article  CAS  Google Scholar 

  41. M. Y. Tolstorukov, A. V. Colasanti, D. M. McCandlish, W. K. Olson, and V. B. Zhurkin, J. Mol. Biol. 371, 725 (2007).

    Article  CAS  Google Scholar 

  42. W. K. Olson, and V. B. Zhurkin, Curr. Opin. Struct. Biol. 21, 348 (2011).

    Article  CAS  Google Scholar 

  43. A. Hamiche, V. Carot, M. Alilat, F. De Lucia, M.-F. O’Donohue, B. Révet, and A. Prunell, Proc. Natl. Acad. Sci. U. S. A. 93, 7588 (1996).

    Article  CAS  Google Scholar 

  44. W. Li, S.-X. Dou, and P.-Y. Wang, J. Theor. Biol. 235, 365 (2005).

    Article  CAS  Google Scholar 

  45. T. Yanao and K. Yoshikawa (submitted for publication).

  46. A. Patriciu, G. S. Chirikjian, and R. V. Pappu, J. Chem. Phys. 121, 12708 (2004).

    Article  CAS  Google Scholar 

  47. T. Yanao and K. Yoshikawa, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 77, 021904 (2008).

    Article  Google Scholar 

  48. T. Nakai, K. Hizume, S. H. Yoshimura, K. Takeyasu, and K. Yoshikawa, Europhys. Lett. 69, 1024 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Yanao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanao, T., Yoshikawa, K. Chiral selection in supercoiling and wrapping of DNA. Polym. Sci. Ser. C 54, 11–20 (2012). https://doi.org/10.1134/S1811238212070065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238212070065

Keywords

Navigation