Skip to main content
Log in

Development of a novel electrochemical biosensor based on catalytic properties of adenosine deaminase immobilized on graphene oxide/carboxymethyl chitosan/multi-wall carbon nanotube platform

  • Technology of Electrochemical Industry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A new type of biosensor was designed based on Adenosine deaminase (ADA) immobilized on graphene oxide (GO)/carboxymethyl chitosan (CMC)/multi-wall carbon nanotube (MWCNT) platform nanostructure, fabricated and successfully applied (utilized) in Adenosine detection. Square wave voltammetry was used to study the biosensor catalytic activity. Morphological analysis of the nanostructure was performed by AFM and SEM methods. The results provided here proved that utilizing GO/CMC/MWCNT leads to effective immobilization of ADA which was confirmed by the long term stability of the biosensor during examined intervals. The immobilized ADA activity was examined and the kinetic parameters (K m and V max) were found to be 47.5 μM and 5.8 μM min−1, respectively. Furthermore, benznidazole was introduced as a potent ADA inhibitor using virtual screening. Outstanding inhibition characteristics of benznidazole was observed against ADA. ADA inhibition by benznidazole was non-competitive with the inhibition constant of 0.42 μM. Such an interesting template with an easy preparation process with low cost can provide a novel matrix for developing biosensors and biocatalysts based on enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalkan, A., Bulut, V., Erel, O., Avci, S., and Bingol, N.K., Mem. Inst. Oswaldo. Cruz., 1999, vol. 94, no. 3, pp. 383–386.

    Article  CAS  Google Scholar 

  2. Hofseth, L. J., Khan, M. A., Ambrose, M., Nikolayeva, O., Xu-Welliver, M., Kartalou, M., Hussain, S.P., Roth, R.B., Zhou, X., Mechanic, L.E., Zurer, I., Rotter, V., Samson, L.D., and Harris, C.C., J. Clin. Invest., 2004, vol. 112, no. 12, pp. 1887–1894.

    Article  Google Scholar 

  3. Sadat Hayatshahi, S.H., Abdolmaleki, P., Ghiasi, M., and Safarian, S., FEBS Let., 2009, vol. 581, no. 3, pp. 506–514.

    Article  CAS  Google Scholar 

  4. Poon, A. and Sawynok, J., Eur. J. Pharmacol., 1999, vol. 384, nos. 2–3, pp. 123–138.

    Article  CAS  Google Scholar 

  5. Paul, M.K., Grover, V., and Mukhopadhyay, A.K., J. Chromatogr. B, Analyt. Technol. Biomed. Life. Sci., 2005, vol. 822, nos. 1–2, pp. 146–153.

    Article  CAS  Google Scholar 

  6. Zentgraf, B. and Ahern, T., J. Pure Appl. Chem., 1991, vol. 63, no. 10, pp. 1527–1539.

    Article  Google Scholar 

  7. Liu, D., Meyerhoff, M.E., Goldberg, H.D., and Brown, R.B., Anal. Chim. Acta, 1993, vol. 247, no. 1, pp. 37–46.

    Article  Google Scholar 

  8. Brown, D.V. and Meyerhoff, M.E., Biosens Bioelectron., 1991, vol. 6, no. 7, pp. 615–622.

    Article  CAS  Google Scholar 

  9. Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., and Guo, S., Langmuir, 2010, vol. 26, no. 9, pp. 6083–6085.

    Article  CAS  Google Scholar 

  10. Zhang, F., Zheng, B., Zhang, J., Huang, X., Liu, H., Guo, S., and Zhang, J., J. Phys. Chem. (C), 2010, vol. 114, no. 18, pp. 8469–8473.

    Article  CAS  Google Scholar 

  11. Zhang, Y., Zhang, J., Huang, X., Zhou, X., Wu, H., and Guo, S., Small, 2012, vol. 8, no. 1, pp. 154–159.

    Article  CAS  Google Scholar 

  12. Wipawakarn, P., Ju, H., and Wong, D.K., Anal. Bioanal. Chem., 2012, vol. 402, no. 9, pp. 2817–2826.

    Article  CAS  Google Scholar 

  13. Mittnacht, U., Hartmann, H., Hein, S., Oliveira, H., Dong, M., Pêgo, A., Kjems, J., Howard, K., and Schlosshauer, A.B., Nano Lett., 2010, vol. 10, no. 10, pp. 3933–3999.

    Article  CAS  Google Scholar 

  14. Salati, A., Keshvari, H., Karkhaneh, A., and Taranejoo, S., J. Macromol. Sci. B, 2011, vol. 50, no. 10, p.1972.

    Article  CAS  Google Scholar 

  15. Taranejoo, S., Janmalek, M., Rafienia, M., Kamali, M., and Mansouri, M., Carbohydr. Polym., 2011, vol. 83, no. 4, pp. 1854–1861.

    Article  CAS  Google Scholar 

  16. Aliaghaie, M., Mirzadeh, H., Dashtimoghadam, E., and Taranejoo, S., Soft Matter, 2012, vol. 8, pp. 7128–7137.

    Article  CAS  Google Scholar 

  17. Xu, C., Cai, H., He, P., and Fang, Y., Analyst, 2001, vol. 126, no. 1, pp. 62–65.

    Article  CAS  Google Scholar 

  18. Devi, R., Yadav, S., and Pundir, C.S., Analyst, 2012, vol. 137, no. 3, pp. 754–759

    Article  CAS  Google Scholar 

  19. Suresh, S., Gupta, M., Kumar, G.A., Rao, V.K., Kumar, O., and Ghosal, P., Analyst, 2012, vol. 137, no. 17, pp. 4086–4092.

    Article  CAS  Google Scholar 

  20. Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure Ber. Dtsch. Chem. Ges., 1898, vol. 131, no. 2, pp. 1481–1487.

    Article  Google Scholar 

  21. Prabaharan, M. and Gong, S., Carbohydr. Polym., 2008, vol. 73, no. 1, pp. 117–125.

    Article  CAS  Google Scholar 

  22. Ting, S.W., Periasamy, A.P., Chen, S.M. and Saraswathi, R., Int. J. Electrochem. Sci., 2011, vol. 6, no. 10, p. 4438.

    Google Scholar 

  23. Xu, Y. and Venton, B., J. Phys. Chem. Chem. Phys., 2010, vol. 12, no. 34, pp. 10027–10032.

    Article  CAS  Google Scholar 

  24. Xing, X.J., Liu, X.G., He, Y., Luo, Q.Y., Tang, H.W., and Pang, D.W., Biosens. Bioelectron., 2012, vol. 38, no. 1, pp. 61–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Taranejoo.

Additional information

Original English Text © S. Taranejoo, M. Moghri, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 1, pp. 74–80.

The text was submitted by author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taranejoo, S., Moghri, M. Development of a novel electrochemical biosensor based on catalytic properties of adenosine deaminase immobilized on graphene oxide/carboxymethyl chitosan/multi-wall carbon nanotube platform. Russ J Appl Chem 87, 69–75 (2014). https://doi.org/10.1134/S1070427214010108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214010108

Keywords

Navigation