Skip to main content
Log in

Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of various compounds on the activity and stability of a phage-associated enzyme lysing cells of streptococci of groups A and C (PlyC) was investigated. Substantial inhibition of the enzyme activity was revealed at an increased ionic strength (in the presence of NaCl) and upon the addition of carbohydrates (mono-, di-, and polysaccharides), i.e., agents stabilizing many enzymes. It was established that the enzyme activity was substantially reduced in the presence of positively charged polyelectrolytes and surfactants, whereas incubation with micelle-forming substances and negatively charged polyelectrolytes led to PlyC activation and stabilization. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions (pH 6.3, room temperature), ture), it practically completely lost its activity in 2 days. Characteristics of the enzyme thermal inactivation were found, in particular, its half-inactivation time at various temperatures; these allowed us to estimate its behavior at any temperature and to recommend conditions for its storage and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPC:

cetylpyridinium chloride

PAA:

polyacrylic acid

PlyC:

phage-associated enzyme lysing streptococcal cells of A and C groups

References

  1. Briko, N.I., Malyshev, N.A., and Pokrovskii, V.I., Terap. Arkhiv, 2001, vol. 77, no. 11, pp. 10–14.

    Google Scholar 

  2. Briko, N.I., Vestn. Ross. Akad. Med. Nauk, 2001, vol. 2, pp. 3–6.

    PubMed  Google Scholar 

  3. Currie, B.J., Curr. Opin. Infect. Dis., 2006, vol. 19, pp. 132–138.

    Article  PubMed  Google Scholar 

  4. Timchenko, V.N., Pavlova, E.B., and Pavlova, N.V., Detskie Infektsii, 2005, vol. 4, pp. 72–75.

    Google Scholar 

  5. Briko, N.I., Dmitrieva, N.F., Eshchina, A.S., Timofeev, Yu.M., Kirillov, M.Yu., Budilov, A.V., Sidorenko, S.V., and Ryapis, L.A., Zh. Mikrobiol. Epidemiol. Immunobiol., 2005, vol. 2, pp. 31–34.

    PubMed  Google Scholar 

  6. Leont’eva, G.F., Suvorov, A.N., Mershgova, L.F., Grabovskaya, K.B., Ustinovich, I.A., and Totolyan, A.A., Zh. Mikrobiol. Epidemiol. Immunobiol., 2005, vol. 2, pp. 35–40.

    PubMed  Google Scholar 

  7. Miroshnikov, K.A., Chertkov, O.V., Nazarov, P.A., and Mesyanzhinov, V.V., Usp. Biol. Khim., 2006, vol. 46, pp. 65–98.

    CAS  Google Scholar 

  8. Matsuzaki, S., Rashei, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., and Imai, S., J. Infect. Chemother., 2005, vol. 11, pp. 211–219.

    Article  PubMed  Google Scholar 

  9. Carlton, R.M., Archivum Immunologiae et Therapiae Experimentalis, 1999, vol. 47, pp. 267–274.

    PubMed  CAS  Google Scholar 

  10. Alisky, J., Iczkowski, K., Rapoport, A., and Troitsky, N., J. Infection, 1998, vol. 36, pp. 5–15.

    Article  CAS  Google Scholar 

  11. Fischetti, V.A., Trends Microbiol., 2005, vol. 13, pp. 491–496.

    Article  PubMed  CAS  Google Scholar 

  12. Loessner, M.J., Curr. Opin. Microbiol., 2005, vol. 8, pp. 480–487.

    Article  PubMed  CAS  Google Scholar 

  13. Lopez, R., Garcia, E., and Garcia, P., Drug Discovery Today: Therapeutic Strategies, 2004, vol. 1, pp. 469–474.

    Article  CAS  Google Scholar 

  14. Nelson, D., Loomis, L., and Fischetti, V.A., Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 4107–4112.

    Article  PubMed  CAS  Google Scholar 

  15. Nelson, D., Schuch, R., Chahales, P., Zhu, S., and Fischetti, V., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 10 765–10 770.

    Article  CAS  Google Scholar 

  16. Mozhaev, V.V., Trends Biotechnol., 1993, vol. 3, pp. 88–95.

    Article  Google Scholar 

  17. O’Fagain, C., Enzyme Microb. Technol., 2003, vol. 33, pp. 137–149.

    Article  CAS  Google Scholar 

  18. Klyachko, N.L., Ignatenko, O.V., Dmitrieva, N.F., Eshchina, A.S., Rainina, E.I., Kazarov, A.K., Kuptsova, O.S., and Levashov, A.V., J. Drug Del. Sci. Tech., 2006, vol. 16, pp. 293–299.

    CAS  Google Scholar 

  19. Kim, J., Grate, J.W., and Wang, P., Chem. Eng. Sci., 2006, vol. 61, pp. 1017–1026.

    Article  CAS  Google Scholar 

  20. Klyachko, N.L. and Levashov, A.V., Curr. Opin. Colloid Int. Sci, 2003, vol. 8, pp. 176–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Klyachko.

Additional information

Original Russian Text © N.L. Klyachko, N.F. Dmitrieva, A.S. Eshchina, O.V. Ignatenko, L.Yu. Filatova, E.I. Rainina, A.K. Kazarov, A.V. Levashov, 2008, published in Bioorganicheskaya Khimiya, 2008, Vol. 34, No. 3, pp. 416–421.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyachko, N.L., Dmitrieva, N.F., Eshchina, A.S. et al. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells. Russ J Bioorg Chem 34, 375–379 (2008). https://doi.org/10.1134/S1068162008030217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162008030217

Key words

Navigation