Skip to main content
Log in

Abstract

Neutrinos are the only fundamental fermions which have no electric charges. Because of that neutrinos have no direct electromagnetic interaction and at relatively small energies they can take part only in weak processes with virtual W ± and Z 0 bosons. Neutrino masses are many orders of magnitude smaller than masses of charged leptons and quarks. These two circumstances make neutrinos unique, special particles. The history of the neutrino is very interesting, exciting and instructive. We try here to follow the main stages of the neutrino history starting from the famous Pauli letter and finishing with the discovery and study of neutrino oscillations. Outstanding contribution to the neutrino physics of Bruno Pontecorvo is discussed in some details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, J. Exptl. Theoret. Phys. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1958)].

    Google Scholar 

  2. B. Pontecorvo, J. Exptl. Theoret. Phys. 34, 247 (1958) [Sov. Phys. JETP 7, 172 (1958)].

    Google Scholar 

  3. B. Pontecorvo, Sov. Phys. JETP 10, 1236 (1960).

    Google Scholar 

  4. B. Pontecorvo Report PD-205, Chalk River Laboratory (1946).

  5. E. Fermi, Zeitschr. f. Phys. 88, 161 (1934).

    Article  ADS  Google Scholar 

  6. F. Perrin, Comptes Rendus. 197, 1625 (1933).

    Google Scholar 

  7. G. Gamow and E. Teller, Phys. Rev. 49, 895 (1936).

    Article  ADS  MATH  Google Scholar 

  8. H. Bethe and R. Peierls, Nature 133, 532 (1934).

    Article  ADS  MATH  Google Scholar 

  9. B. T. Cleveland et al., Astrophys. J. 496, 505 (1998).

    Article  ADS  Google Scholar 

  10. V. A. Kuzmin, Sov. JETP 22, 1051 (1966).

    ADS  Google Scholar 

  11. P. Anselmann et al. (GALLEX Collaboration), Phys. Lett. B 327, 377 (1994).

    Article  ADS  Google Scholar 

  12. J. N. Abdurashitov et al. (SAGE Collaboration), Phys. Lett. B 328, 234 (1994).

    Article  ADS  Google Scholar 

  13. B. Pontecorvo, Phys. Rev. 72, 246 (1947).

    Article  ADS  Google Scholar 

  14. G. Puppi, Nuovo Cimento 5, 587 (1948).

    Article  Google Scholar 

  15. O. Klein, Nature 161, 897 (1948).

    Article  ADS  Google Scholar 

  16. C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

    Article  ADS  Google Scholar 

  18. C. S. Wu et al., Phys. Rev. 105, 1413 (1957).

    Article  ADS  Google Scholar 

  19. R. L. Garwin, L. M. Lederman, and W. Weinrich, Phys. Rev. 105, 1415 (1957).

    Article  ADS  Google Scholar 

  20. L. D. Landau, Nucl. Phys. 3, 127 (1957).

    Article  Google Scholar 

  21. T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Salam, Nuovo Cim. 5, 299 (1957).

    Article  MathSciNet  Google Scholar 

  23. H. Wei, Z. Physik. 56, 330 (1929).

    Article  ADS  Google Scholar 

  24. W. Pauli, Handbuch der Physik (Springer Verlag, Berlin, 1933), Vol. 24, pp. 226–227.

    Google Scholar 

  25. M. Goldhaber, L. Grodzins, and A. W. Sunyar, Phys. Rev. 109, 1015 (1958).

    Article  ADS  Google Scholar 

  26. R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 109, 1860 (1958).

    Article  ADS  Google Scholar 

  28. S. S. Gerstein and Ja. B. Zeldovich, Sov. Phys. JETP 2, 576 (1956).

    Google Scholar 

  29. H. L. Anderson and C. Lattes, Nuovo Cimento 6, 1356 (1957).

    Article  Google Scholar 

  30. T. Fazzini, G. Fidecaro, et al., Phys. Rev. Lett. 1, 247 (1958).

    Article  ADS  Google Scholar 

  31. F. Reines, H. S. Gurr, and H. W. Sobel, Phys. Rev. Lett. 37, 315 (1976).

    Article  ADS  Google Scholar 

  32. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

    Article  ADS  Google Scholar 

  33. O. Klein, in Proceedings of Symp. on Les Nouvelles Theories de la Physique, Warsaw, 1938 (Institut International de Coop-ration Intellectuelle, Paris, 1939), p. 6.

    Google Scholar 

  34. F. Reines and C. L. Cowan, Phys. Rev. 92, 830 (1953); F. Reines and C. L. Cowan, Nature 178, 446 (1956); F. Reines and C. L. Cowan, Phys. Rev. 113, 273 (1959).

    Article  ADS  Google Scholar 

  35. R. Davis, Bull. Am. Phys. Soc., Washington meeting, 1959.

  36. B. Pontecorvo, Journal de Physique 43(12), C8–221 (1959).

    Google Scholar 

  37. G. Danby et al., Phys. Rev. Lett. 9, 36 (1962).

    Article  ADS  Google Scholar 

  38. B. Pontecorvo and E. P. Hincks, Phys. Rev. 73, 257 (1948).

    Article  ADS  Google Scholar 

  39. G. Feinberg, Phys. Rev. 110, 1482 (1958).

    Article  ADS  Google Scholar 

  40. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  41. S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1258 (1970).

    Article  Google Scholar 

  42. S. M. Bilenky and B. Pontecorvo, Phys. Rep. 41, 225 (1978).

    Article  ADS  Google Scholar 

  43. M. L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975).

    Article  ADS  Google Scholar 

  44. K. Kodama et al. (DONUT Collaboration), Physics Letters B 504, 218 (2001).

    Article  ADS  Google Scholar 

  45. M. Kobayashi and T. Maskawa, Progress of Theoretical Physics 49(2), 652 (1973).

    Article  ADS  Google Scholar 

  46. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

    Article  ADS  Google Scholar 

  47. A. Salam, in Proceedings of the Eighth Nobel Symposium, Ed. by N. Svartholm (Wiley-Interscience, New York, 1968).

    Google Scholar 

  48. S. L. Glashow, Nucl. Phys. 22, 579 (1961).

    Article  Google Scholar 

  49. G.’ t Hooft, Nucl. Phys. B 35, 1967 (1971).

    Article  Google Scholar 

  50. C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  51. F. J. Hasert et al., Phys. Lett. B 46, 138 (1973).

    Article  ADS  Google Scholar 

  52. M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  53. E. Majorana, Nuovo Cimento 5, 171 (1937).

    Google Scholar 

  54. B. Pontecorvo, J. Exptl. Theoret. Phys. 53, 1717 (1967) [Sov. Phys. JETP 26, 984 (1968)].

    Google Scholar 

  55. V. Gribov and B. Pontecorvo, Phys. Lett. B 28, 493 (1969).

    Article  ADS  Google Scholar 

  56. J. Bahcall and S. Frautschi, Phys. Lett. 29, 623 (1969).

    Article  Google Scholar 

  57. S.M., Bilenky and B. Pontecorvo, Phys. Lett. B 61, 248 (1976); Yad. Fiz. 3, 603 (1976).

    Article  ADS  Google Scholar 

  58. H. Fritzsch and P. Minkowski, Phys. Lett. B 62, 72 (1976).

    Article  ADS  Google Scholar 

  59. S. Eliezer and A. Swift, Nucl. Phys. B 105, 45 (1976).

    Article  ADS  Google Scholar 

  60. Z. Maki, M. Nakagava, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  MATH  Google Scholar 

  61. S. M. Bilenky and B. Pontecorvo, Phys. Rep. 41, 225 (1978).

    Article  ADS  Google Scholar 

  62. S. M. Bilenky and B. Pontecorvo, Lett. Nuovo Cim. 17, 569 (1976).

    Article  Google Scholar 

  63. S. M. Bilenky and S. T. Petcov, Rev. Mod. Phys. 59, 671 (1987).

    Article  ADS  Google Scholar 

  64. K. S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989).

    Article  ADS  Google Scholar 

  65. K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  66. P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, Eds. by F. van Nieuwenhuizen and D. Freedman (North Holland, Amsterdam, 1979) p. 315; T. Yanagida, in Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe (KEK, Japan, 1979); S. L. Glashow, NATO Adv. Study Inst. Ser. B Phys. 59, 687 (1979); R. N. Mohapatra and G. Senjanovic-, Phys. Rev. D 23, 165 (1981).

    Article  ADS  Google Scholar 

  67. G. Mention et al., Phys. Rev. D 83, 073006 (2011); arXiv:1101.2755v4.

    Article  ADS  Google Scholar 

  68. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. P. Mikheev and A. Yu. Smirnov, Nuovo Cim. C 9, 17 (1986).

    Article  ADS  Google Scholar 

  69. Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998); R. Wendell et al. (Super-Kamiokande Collaboration), Phys. Rev. D 81, 092004 (2010).

    Article  ADS  Google Scholar 

  70. Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002); B. Aharmim et al. (SNO Collaboration), arXiv:1109.0763.

    Article  ADS  Google Scholar 

  71. K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003); T. Araki et al. (Kam-LAND Collaboration), Phys. Rev. Lett. 94, 081801 (2005); S. Abe et al. (KamLAND Collaboration), Phys. Rev. Lett. 100, 221803 (2008).

    Article  ADS  Google Scholar 

  72. M. H. Ahn et al. (K2K Collaboration), Phys. Rev. Lett. 90, 041801 (2003).

    Article  ADS  Google Scholar 

  73. D. G. Michael et al. (MINOS Collaboration), Phys. Rev. Lett. 97, 191801 (2006); P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 106, 181801 (2011).

    Article  ADS  Google Scholar 

  74. M. Apollonio et al. (CHOOZ Collaboration), Eur. Phys. J. C 27, 331 (2003).

    Article  ADS  Google Scholar 

  75. K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011).

    Article  ADS  Google Scholar 

  76. Y. Abe et al. (Double Chooz Collaboration), arXiv:1112.6353v2.

  77. F. P. An et al. (Daya Bay Collaboration), arXiv:1203.1669.

  78. J. K. Ahn et al. (RENO Collaboration), arXiv:1204.05V2.

  79. M. Gunther et al. (Heidelberg—Moscow Collaboration), Phys. Rev. D 55, 54 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  80. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. V 21, 1547 (2006).

    Article  ADS  Google Scholar 

  81. J. Jochum (GERDA Collaboration), Prog. Part. Nucl. Phys. 64, 261 (2010); S. Schonert (GERDA Collaboration), J. Phys. Conf. Ser. 203, 012014 (2010).

    Article  ADS  Google Scholar 

  82. Ch. Kraus et al., Eur. Phys. J. C 40, 447 (2005); arXiv:hep-ex/0412056.

    Article  ADS  Google Scholar 

  83. V. N. Aseev et al., Phys. Rev. D 84, 112003 (2011); arXiv:1108.5034.

    Article  ADS  Google Scholar 

  84. A. Osipowicz et al. (KATRIN Collaboration), hep-ex/0109033; J. Angrik et al. (KATRIN Collaboration), KATRIN Design Report 2004, http://biblio-thek.fzk.de/zb/berichte/FZKA7090.pdf.

  85. S. Hannestad, Prog. Part. Nucl. Phys. 65, 185 (2010).

    Article  ADS  Google Scholar 

  86. K. N. Abazajian et al., arXiv:1103.5083 [astro-ph].

  87. A. Aguilar et al. (LSND Collaboration), Phys. Rev. D 64, 112007 (2002).

    Article  ADS  Google Scholar 

  88. C. Giunti, arXiv:1110.3914.

  89. S. Davidson, E. Nardi, and Y. Nir, Phys. Rept. 466, 105 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilenky, S.M. Neutrino. Phys. Part. Nuclei 44, 1–46 (2013). https://doi.org/10.1134/S1063779613010024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613010024

Keywords

Navigation