Skip to main content
Log in

Ab initio calculation of double ionization of atoms

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The Solov’ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width γ describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law γE 1/4 is applicable at experimentally accessible energies. The Gaussian width γ was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state—specifically, a negative atomic-hydrogen ion H and heliumin the 1s2s 1 S and 1s3s 1 S excited states. It was found that this function, γ(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Wannier, Phys. Rev. 90, 817 (1953).

    Article  ADS  MATH  Google Scholar 

  2. J. S. Briggs and V. Schmidt, J. Phys. B 33, R1 (2000).

    Article  ADS  Google Scholar 

  3. V. V. Serov, V. L. Derbov, B. B. Joulakian, and S. I. Vinitsky, Phys. Rev. A 78, 063403 (2008).

    Article  ADS  Google Scholar 

  4. V. V. Serov, V. L. Derbov, B. B. Joulakian, and S. I. Vinitsky, Phys. Rev. A 75, 012715 (2007).

    Article  ADS  Google Scholar 

  5. E. A. Soloviev and S. I. Vinitsky, J. Phys. B 18, L557 (1985).

    Article  ADS  Google Scholar 

  6. E. Y. Sidky and B. D. Esry, Phys. Rev. Lett. 85, 5086 (2000).

    Article  ADS  Google Scholar 

  7. A. K. Kazansky, P. Selles, and L. Malegat, Phys. Rev. A 68, 052701 (2003).

    Article  ADS  Google Scholar 

  8. A. S. Kheifets and I. Bray, Phys.Rev.A 73, 020708(R) (2006).

    Article  ADS  Google Scholar 

  9. A. Huetz, P. Selles, D. Waymel, and J. Mazeau, J. Phys. B 24, 1917 (1991).

    Article  ADS  Google Scholar 

  10. A. R. P. Rau, J. Phys. B 9, L283 (1976).

    Article  ADS  Google Scholar 

  11. S. Otranto and C. R. Garibotti, Phys. Rev. A 71, 034703 (2005).

    Article  ADS  Google Scholar 

  12. A. K. Kazansky and V. N. Ostrovsky, J. Phys. B 26, 2231 (1993).

    Article  ADS  Google Scholar 

  13. A. S. Kheifets and I. Bray, Phys. Rev. A 62, 065402 (2000).

    Article  ADS  Google Scholar 

  14. A. Huetz and J. Mazeau, Phys. Rev. Lett. 85, 530 (2000).

    Article  ADS  Google Scholar 

  15. L. Malegat, P. Selles, P. Lablanquie, et al., J. Phys. B 30, 263 (1997).

    Article  ADS  Google Scholar 

  16. M. Foster and J. Colgan, J. Phys. B 39, 5067 (2006).

    Article  ADS  Google Scholar 

  17. L. Malegat, P. Selles, and A. Kazansky, Phys. Rev. A 60, 3667 (1999).

    Article  ADS  Google Scholar 

  18. G. Dawber et al., J. Phys. B 28, L271 (1995).

    Article  ADS  Google Scholar 

  19. R. Dörner et al., Phys. Rev. A 57, 1074 (1998).

    Article  ADS  Google Scholar 

  20. C. Dawson et al., J. Phys. B 34, L525 (2001).

    Article  ADS  Google Scholar 

  21. G. Turri et al., Phys. Rev. A 65, 034702 (2002).

    Article  ADS  Google Scholar 

  22. C. Dal Cappello, Yu. V. Popov, G. Stefani, et al., J. Phys. B 27, 1549 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Serov.

Additional information

Original Russian Text © V.V. Serov, 2013, published in Yadernaya Fizika, 2013, Vol. 76, No. 2, pp. 176–183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serov, V.V. Ab initio calculation of double ionization of atoms. Phys. Atom. Nuclei 76, 147–154 (2013). https://doi.org/10.1134/S1063778813010122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813010122

Keywords

Navigation