Skip to main content
Log in

Numerical construction of the continuous spectrum Eigenfunctions of the three body Schrödinger operator: Three particles on the axis with short-range pair potentials

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Based on a new method of the numerical construction of the three-body Schrödinger operator continuous spectrum eigenfunctions an analysis of the solutions of the problem of three identical particles on the axis with quickly decreasing repulsive pair potentials is offered. The initial problem is reduced to solving an inhomogeneous boundary problem for an elliptical partial differential equation in a twodimensional domain as a circle with radiation boundary conditions, with a ray approximation of the solution with diffraction corrections, contributing to a smoothness of a solution sought, being used. The approach offered allows a natural generalization for a case of slowly decreasing potentials of the Coulomb type and higher configuration space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Faddeev, Tr. MIAN SSSR 69, Ed. by I. G. Petrovskii (Akad. Nauk SSSR, Moscow, Leningrad, 1963; Israel Program Sci. Transl., Jerusalem, 1965).

    Google Scholar 

  2. V. Enss, Ann. Phys. (N. Y.) 119, 117 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Dereziński and C. Gérard, J. Math. Phys. 38, 3925 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D. R. Yafaev, Mathematical Scattering Theory. General Theory (Amer. Math. Soc., New York, 1992).

    MATH  Google Scholar 

  5. E. O. Alt, P. Graßberger, and W. Sandhas, Nucl. Phys. B 2, 167 (1967).

    Article  ADS  Google Scholar 

  6. P. K. Peterkop, Sov. Phys. JETP 14, 1377 (1962).

    Google Scholar 

  7. S. P. Merkur’ev, Theor. Math. Phys. 32, 680 (1977); M. Brauner, J. S. Briggs, and H. J. Klar, J. Phys. B 22, 2265 (1989).

    Article  MathSciNet  Google Scholar 

  8. E. O. Alt and A. M. Mukhamedzhanov, JETP Lett. 56, 435 (1992); E. O. Alt and A. M. Mukhamedzhanov, Phys. Rev. A 47, 2004 (1993).

    MathSciNet  ADS  Google Scholar 

  9. Y. E. Kim and A. L. Zubarev, Phys. Rev. A 56, 521 (1997).

    Article  ADS  Google Scholar 

  10. M. R. H. Rudge, Rev. Mod. Phys. 40, 564 (1968).

    Article  ADS  Google Scholar 

  11. R. K. Peterkop, Theory of Ionization of Atoms by Electron-Impact (Colorado Associated Univ. Press, Boulder, 1977).

    Google Scholar 

  12. L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Kluwer, Dordrecht, 1993).

    MATH  Google Scholar 

  13. S. P. Merkuriev, Ann. Phys. (N.Y.) 130, 395 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. E. O. Alt, W. Sandhas, and H. Ziegelmann, Phys. Rev. C 17, 1981 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  15. E. O. Alt, S. B. Levin, and S. L. Yakovlev, Phys. Rev. C 69, 034002 (2004).

    Article  ADS  Google Scholar 

  16. E. O. Alt and W. Sandhas, in Coulomb Interactions in Nuclear and Atomic Few-Body Collisions, Ed. by F. S. Levin and D. Micha (Plenum, New York, 1996), p. 1.

    Google Scholar 

  17. S. Oryu, S. Nishinohara, N. Shiiki, and S. Chiba, Phys. Rev. C 75, 021001(R) (2007).

    Article  ADS  Google Scholar 

  18. A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev. C 71, 054005 (2005).

    Article  ADS  Google Scholar 

  19. A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 64, 024002 (2001).

    Article  ADS  Google Scholar 

  20. V. B. Belyaev, S. B. Levin, and S. L. Yakovlev, J. Phys. B 37, 1369 (2004).

    Article  ADS  Google Scholar 

  21. V. M. Suslov and B. Vlahovic, Phys. Rev. C 69, 044003 (2004).

    Article  ADS  Google Scholar 

  22. T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. McCurdy, Science 286, 2474 (1999); M. Baertschy, T. N. Rescigno, and C. W. McCurdy, Phys. Rev. A 64, 022709 (2001); I. Bray, Phys. Rev. Lett. 89, 273201 (2002).

    Article  Google Scholar 

  23. Yu. V. Popov, S. A. Zaitsev, S. I. Vinitskii, Phys. Part. Nucl. 42, 683 (2011).

    Article  Google Scholar 

  24. V. S. Buslaev and S. B. Levin, Am.Math. Soc. Transl. 225, 55 (2008).

    MathSciNet  Google Scholar 

  25. V. S. Buslaev and S. B. Levin, Algebra Anal. 22(3), 60 (2010).

    MathSciNet  Google Scholar 

  26. V. S. Buslaev and S. B. Levin, arXiv: 1104.3358 [math-ph]; arXiv: 1111.5841 [math-ph].

  27. V. S. Buslaev and A. F. Vakulenko, Vestn. Leningr. Univ., No. 13, 22 (1977).

  28. V. S. Buslaev and S. P. Merkuriev, Sov. Phys. Dokl. 14, 1055 (1969).

    ADS  MATH  Google Scholar 

  29. V. S. Buslaev, S. P. Merkuriev, and S. P. Salikov, Probl.Mat. Fiz. (LGU), No. 9, 14 (1979).

  30. V. S. Buslaev, S. P. Merkuriev, and S. P. Salikov, Zap. Nauch. Sem. LOMI 84, 16 (1979).

    MATH  Google Scholar 

  31. A.M. Veselova, Theor.Math. Phys. 35, 395 (1978).

    Article  Google Scholar 

  32. E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J. B. McGuire, J.Math. Phys. 5, 622 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. W. G. Gibson, S. Y. Larsen, and J. Popiel, Phys. Rev. A 35, 4919 (1987).

    Article  ADS  Google Scholar 

  36. Yu. A. Kuperin, P. B. Kurasov, Yu. B. Melnikov, and S. P. Merkuriev, Ann. Phys. (N.Y.) 205, 330 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. A. Amaya-Tapia, S. Y. Larsen, and J. Popiel, Few-Body Syst. 23, 87 (1998).

    Article  ADS  Google Scholar 

  38. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).

    Article  ADS  Google Scholar 

  39. S. I. Vinitskii, S. I. Larsen, D. V. Pavlov, and D. V. Proskurin, Phys. At. Nucl. 64, 27 (2001).

    Article  Google Scholar 

  40. O. Chuluunbaatar, A. A. Gusev, S. Y. Larsen, and S. I. Vinitsky, J. Phys. A 35, L513 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Amaya-Tapia, G. Gasaneo, S. Ovchinnikov, et al., J.Math. Phys. 45, 3533 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. O. I. Tolstikhin and C. Namba, Phys. Rev. A 70, 062721 (2004).

    Article  ADS  Google Scholar 

  43. G. V. Sitnikov and O. I. Tolstikhin, Phys. Rev. A 71, 022708 (2005).

    Article  ADS  Google Scholar 

  44. N. P. Mehta and J. R. Shepard, Phys. Rev. A 72, 032728 (2005).

    Article  ADS  Google Scholar 

  45. O. Chuluunbaatar et al., J. Phys. B 39, 243 (2006).

    Article  ADS  Google Scholar 

  46. N. P. Mehta, B. D. Esry, and C. H. Greene, Phys. Rev. A 76, 022711 (2007).

    Article  ADS  Google Scholar 

  47. O. Chuluunbaatar et al., Comput. Phys. Commun. 177, 649 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001).

    Article  Google Scholar 

  49. T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London) 440, 900 (2006).

    Article  ADS  Google Scholar 

  50. T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).

    Article  ADS  Google Scholar 

  51. J. Esteve et al., Phys. Rev. Lett. 96, 130403 (2006).

    Article  ADS  Google Scholar 

  52. V. S. Buslaev, S. B. Levin, P. Neittaannmäki, and T. Ojala, J. Phys. A 43, 285205 (2010); arXiv: 0909.4529v1 [math-ph].

    Article  MathSciNet  Google Scholar 

  53. V. V. Pupyshev, Phys. Part. Nucl. 30, 689 (1999).

    Article  Google Scholar 

  54. http://www.alglib.net; http://alglib.sources.ru

  55. http://www.comsol.com

  56. http://www.freefem.org/ff++

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Levin.

Additional information

Original Russian Text © V.S. Buslaev, Ya.Yu. Koptelov, S.B. Levin, D.A. Strygina, 2013, published in Yadernaya Fizika, 2013, Vol. 76, No. 2, pp. 236–246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buslaev, V.S., Koptelov, Y.Y., Levin, S.B. et al. Numerical construction of the continuous spectrum Eigenfunctions of the three body Schrödinger operator: Three particles on the axis with short-range pair potentials. Phys. Atom. Nuclei 76, 208–218 (2013). https://doi.org/10.1134/S1063778813010043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813010043

Keywords

Navigation