Skip to main content
Log in

A prototype for a tomography system using third-order acoustic nonlinear effects

  • Nonlinear Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A prototype of a tomography system for reconstructing the distributions of acoustic nonlinear parameters is developed and manufactured on the basis of the effect of nonlinear noncollinear interaction of three primary waves. Application of coded primary signals with further correlation processing of a detected combination signal makes it possible to reconstruct the complete image of an object as a result of a single experiment using a small number of transducers, i.e., three radiators and one receiver. A mirror system is proposed, consisting of two coaxial conical acoustic mirrors that make it possible to transform the front of a wave from a cylindrical transducer into a homogeneous quasi-plane beam with a large width close to the real medical diagnostics requirements. Results of physical experiments are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Duck, Ultrasound in Medicine and Biology 28(1), 1 (2002).

    Article  Google Scholar 

  2. L. Bjørnø, Ultrasonics 24(5), 254 (1986).

    Article  Google Scholar 

  3. V. A. Burov, A. A. Shmelev, and O. D. Rumyantseva, Bull. Russ. Acad. Sci.: Phys. 72, 82 (2008).

    Article  Google Scholar 

  4. V. A. Burov and A. A. Shmelev, Acoust. Phys. 55, 482 (2009).

    Article  ADS  Google Scholar 

  5. X. F. Gong, Y. S. Yan, D. Zhang, and H. L. Wang, in Proc. 16th Int. Symp. on Nonlinear Acoustics, Moscow: MSU, Faculty of Physics, 2002, Vol. 1, pp. 469–472.

  6. D. Zhang, X. Chen, and X. Gong, J. Acoust. Soc. Am. 109, 1219 (2001).

    Article  ADS  Google Scholar 

  7. V. A. Burov, R. V. Kryukov, O. D. Rumyantseva, and A. A. Shmelev, Acoust. Phys. 58, 48 (2012).

    Article  ADS  Google Scholar 

  8. T. Sato, K. Yamashita, H. Ninoyu, et al., in Acoustical Imaging, Ed. by Y. Wei and B. Gu (Plenum, New York, 1993), Vol. 20, pp. 9–18.

    Chapter  Google Scholar 

  9. V. A. Burov, I. E. Gurinovich, O. V. Rudenko, and E. Ya. Tagunov, Acoust. Phys. 40, 816 (1994).

    ADS  Google Scholar 

  10. V. A. Burov, S. N. Evtukhov, A. M. Tkacheva, and O. D. Rumyantseva, Acoust. Phys. 52, 655 (2006).

    Article  ADS  Google Scholar 

  11. S. A. Bereza, V. A. Burov, and S. N. Evtukhov, Acoust. Phys. 54, 449 (2008).

    Article  ADS  Google Scholar 

  12. V. A. Burov, S. N. Evtukhov, A. A. Shmelev, and O. D. Rumyantseva, Proc. 18th Int. Symp. on Nonlinear Acoustics ‘Nonlinear Acoustics-Fundamentals and Applications’, Melville, 2008, Ed. by B. O. Enflo, C. M. Hedberg, and L. Kari (Am. Inst. Phys., New York, 2008), pp. 440–443.

    Google Scholar 

  13. V. A. Burov, A. A. Shmelev, and O. D. Rumyantseva, Acoustical Imaging, Ed. by M. P. André, J. P. Jones, and H. Lee, (Springer Science+Business Media, New York, 2011), Vol. 30, pp. 379–388.

    Chapter  Google Scholar 

  14. F. Trendelenburg, Uspekhi Fiz. Nauk 10, 593 (1930).

    Google Scholar 

  15. S. N. Rzhevkin, A Course of Lectures on the Theory of Sound (Mos. Gos. Univ., Moscow, 1960, Pergamon, New York, 1963).

    Google Scholar 

  16. C. S. Desilets, J. D. Fraser, and G. S. Kino, IEEE Trans. on Sonics and Ultrasonics 25, 115 (1978).

    Article  Google Scholar 

  17. N. Felix, L. Ratsimandresy, and R. Dufait, IEEE Ultrasonics Symposium 2, 1123 (2001).

    Google Scholar 

  18. G. Hongkai, J. M. Cannata, Z. Qifa, and K. K. Shung, IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 52, 2096 (2005).

    Article  Google Scholar 

  19. B. P. Aseev, Foundations of Radio Engineering (Svyazizdat, Moscow, 1947) [In Russian].

    Google Scholar 

  20. Yu. S. Lezin, Optimum Filters and Pulsed Signal Storage Devices (Sov. Radio, Moscow, 1969; Defense Techn. Inform. Center, Fort Belvoir, VA, 1982).

    Google Scholar 

  21. L. E. Varakin, Communication Systems with Noise-Type Signals (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  22. A. A. Kharlamov and A. V. Boreskov, Fundamentals of Work with CUDA Technology (DMK, Moscow, 2010), [in Russian].

    Google Scholar 

  23. J. Sanders and E. Kandrot, CUDA by Example: An Introducing to General-Purpose GPU Programming (Addison-Wesley, Boston, Massachusetts, 2010).

    Google Scholar 

  24. P. P. Parkhomenko, M. F. Karavay, E. G. Sukhov, et al., RF Patent no. 2145797 (June 23,1999), Moscow, 2000.

  25. V. A. Burov, O. V. Matveev, and O. D. Rumyantseva, Acoust. Phys. 56, 238 (2010).

    Article  ADS  Google Scholar 

  26. V. A. Burov, S. N. Evtukhov, and O. D. Rumyantseva, Acoust. Phys. 54, 615 (2008).

    Article  ADS  Google Scholar 

  27. V. A. Burov, O. V. Matveev, S. N. Evtukhov, and O. D. Rumyantseva, Acoustical Imaging Ed. by A. Nowicki, J. Litniewski, and T. Kujawska (Springer Science+Business Media, New York, 2012), Vol. 31, pp. 211–221.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Burov.

Additional information

Original Russian Text © V.A. Burov, A.A. Shmelev, D.I. Zotov, 2013, published in Akusticheskii Zhurnal, 2013, Vol. 59, No. 1, pp. 31–51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burov, V.A., Shmelev, A.A. & Zotov, D.I. A prototype for a tomography system using third-order acoustic nonlinear effects. Acoust. Phys. 59, 27–44 (2013). https://doi.org/10.1134/S1063771013010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771013010065

Keywords

Navigation