Skip to main content
Log in

Deoxyribonucleases (DNases) in the cortex and endosome from the marine sponge Tethya aurantium

  • Animal Physiology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The presence and activity of deoxyribonucleases in the cortex and endosome sections from a sponge, the sea orange Tethya aurantium, were investigated. The maximal enzyme activity in sponge homogenate was detected at pH 4.27, pH 7.0 and pH 8.5–8.75. Among different specimens, several distinct patterns of neutral DNase isozymes were observed in the cortex section. In each investigated specimen the highest neutral DNase activity belonged to high molecular weight proteins (up to75 kDa). The acid DNases showed a low level of enzyme activity. In the endosome section the acid DNase activity was up to ten times higher than in the cortex and the presence of DNase II-like protein was detected. Neutral DNase, which expressed the highest enzyme activity in all the investigated specimens, has a molecular weight of 20 kDa and belongs to the DNase I-like family. The results indicate that the activity of neutral and acid DNases is related to sponge sections and their biological functions. The cortex, as the sponge section that communicates with the environment, expresses high interindividual variability and heterogeneity of neutral DNases, while the endosome section, where the intracellular digestion is localized, is a site of high acid DNase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranovskii, A.G., Buneva, V.N., and Nevinsky, G.A., Human Deoxyribonucleases. A Review, Biokhimiya, 2004, vol. 69, no. 6, pp. 725–742.

    Google Scholar 

  2. Bihari N., Fafanđel M. and Perić L., Tissue distribution of neutral deoxyribonuclease (DNase) activity in the mussel Mytilus galloprovinicialis, Comp. Biochem. Phisiol. B, 2007, vol. 147, pp. 550–556.

    Article  Google Scholar 

  3. Burton, M., A Comparative Study of the Characteristics of Shallow-water and Deep-sea Sponges, with Notes on their External Form and Reproduction, J. Queckett. Microsc. Club Ser. 2, 1928, vol. 16, pp. 49–70.

    Google Scholar 

  4. Choi, S.J. and Szoka, F.C., Fluorimetric Determination of Deoxyribonuclease I activity with PicoGreen® Anal. Biochem., 2000, vol. 281, pp. 95–97.

    Article  CAS  PubMed  Google Scholar 

  5. Evans, C.J. and Aguilera, R.J., DNase II: Genes, Enzymes and Function, Gene, 2003, vol. 322, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  6. Fafanđel, M., Bihari, N., Peri L., and Cenov, A., Effect of Marine Pollutants on the Acid DNase Activity in the Haemocytes and Digestive Gland of the Mussel Mytilus galloprovincialis, Aquat. Toxicol., 2008, vol. 86, pp. 508–513.

    Article  PubMed  Google Scholar 

  7. Gamulin, V., Müller, I.M., and Müller, W.E.G., Sponge Proteins are More Similar to those of Homo sapiens than to Caenorhabditis elegans. Biol. J. Linn. Soc., 2000, vol. 71, pp. 821–828.

    Article  Google Scholar 

  8. Hedgecock, E.M., Sulston J.E. and Thomson, J.N., Mutations Affecting Programmed Cell Deaths in the Nematode Caenorhabditis elegans, Science, 1983, vol. 220, pp. 1277–1279.

    Article  CAS  PubMed  Google Scholar 

  9. Heicke, B. and Schmidt, B., High-molecular-weight Deoxyribonuclease from Verongia aerophoba, FEBS Lett., 1969, vol. 5, pp. 165–168.

    Article  CAS  PubMed  Google Scholar 

  10. Kishi, K., Yasuda, T., Ikehara, Y., Sawazaki, K., Sato, W., and Iida R., Human Serum Deoxyribonuclease I (DNase I) Polymorphism: Pattern Similarities Among Isozymes from Serum, Urine, Kidney, Liver, and Pancreas, Am. J. Hum. Genet., 1990, vol. 47, pp. 121–126.

    CAS  PubMed  Google Scholar 

  11. Lacks, S.A. and Springhorn, S.S., Renaturation of Enzymes after Polyacrylamide Gel Electrophoresis in the Presence of Sodium Dodecyl Sulphate, J. Biol. Chem., 1980, vol. 255, pp. 7467–7473.

    CAS  PubMed  Google Scholar 

  12. Lacks, S.A., Deoxyribonuclease I in Mammalian Tissues: Specificity of Inhibition by Actin, J. Biol. Chem., 1981, vol. 256, pp. 2644–2648.

    CAS  PubMed  Google Scholar 

  13. Liao, T.H., The Subunit Structure and Active Site Sequence of Porcine Spleen Deoxyribonuclease, J. Biol. Chem., 1985, vol. 260, pp. 10708–10713.

    CAS  PubMed  Google Scholar 

  14. Lowry, D.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 276, pp. 19276–19285.

    Google Scholar 

  15. Nadano, D., Yasuda, T., and Kishi, K., Measurement of Deoxyribonuclease I Activity in Human Tissue and Body Fluids by Single Radial Enzyme Diffusion method., Clin. Chem., 1993, vol. 39/3, pp. 448–452.

    Google Scholar 

  16. Nakashima, Y., Yasuda, T., Takeshita, H., Nakajima, T., Hosomi, O., Mori, S., and Kishi, K., Molecular Biochemical and Immunological Studies of Ten Pancreatic Deoxyribonuclease I, Int. J. Biochem. Cell Biol., 1999, vol. 31, pp. 1315–1326.

    Article  CAS  PubMed  Google Scholar 

  17. Napirei, M., Ricken, A., Eulitz, D., Knoop, H., and Mannherz, G., Expression Pattern of the Deoxyribonuclease 1 Gene: Lessons from the Dnase 1 Knockout Mouse, Biochem. J., 2004, vol. 380, pp. 929–937.

    Article  CAS  PubMed  Google Scholar 

  18. Øverbø, K. and Myrnes, B. Deoxyribonuclease II from Icelandic Scallop (Chlamys islandica): Isolation and Partial Characterization, Comp. Biochem. Physiol. B, 2006, vol. 143, pp. 315–318.

    Article  PubMed  Google Scholar 

  19. Rasskazov, V.A., Pirozhnikova, V.V., and Galkin V.V., Some Properties and Specificities of Deoxyribonucleases from Marine Invertebrates and Fishes, Comp. Biochem. Physiol. B, 1975, vol. 51, pp. 343–347.

    Article  CAS  PubMed  Google Scholar 

  20. Rudolph, F.B., The Biochemistry and Physiology of Nucleotides, J. Nutr., 1994, vol. 124, pp. 124S–127S.

    CAS  PubMed  Google Scholar 

  21. Salnikow, J., Moore, S., and Stein, W.H., Comparison of the Multiple Forms of Bovine Pancreatic Deoxyribonuclease, J. Biol. Chem., 1970, vol. 245, pp. 5685–5690.

    CAS  PubMed  Google Scholar 

  22. Sará, M., A Study of Genus Tethya (Porifera, Demospongiae) and New Perspectives in Sponge Systematics, Taxonomy of Porifera, G13 (Vacelet, J. and Boury-Esnault, N., eds.), Berlin: Springer, 1987, vol. 613, pp. 205–225.

    Google Scholar 

  23. Shiomi, K., Midorikawa, S., Ishida, M., Nagashima, Y., and Nagai, H., Plancitoxins, Lethal Factors from the Crown-of-thorns Starfish Acanthaster planci, are Deoxyribonucleases II, Toxicon, 2004, vol. 44, pp. 499–506.

    Article  CAS  PubMed  Google Scholar 

  24. Shpak, M., Kugelman, J.R., Varela-Ramirez, A., and Aguilera, R.J., The Phylogeny and Evolution of Deoxyribonuclease II: An Enzyme Essential for Lysosomal DNA Degradation, Mol. Phylogen. Evol., 2008, vol. 47, pp. 841–854.

    Article  CAS  Google Scholar 

  25. Takeshita, H., Mogi, K., Yasuda, T., Nakajima, T., Nakashima, Y., Mori, S., Hoshino, T., and Kishi, K., Mammalian Deoxyribonucleases I are Classified into Three Types: Pancreas, Parotid, and Pancreas-Parotid (mixed), Based on Differences in their Tissue Concentrations, Biochem. Biophys. Res. Comm., 2000, vol. 269, pp. 481–484.

    Article  CAS  PubMed  Google Scholar 

  26. Takeshita, H., Yasuda, T., Iida, R., Nakaima, T., Mori, S., Mogi, K., Kaneko, Y., and Kishi, K., Amphibian DNases I are Characterised by C-terminal End with a Unique, Cysteine-rich Stretch and by the Insertion of a Serine Residue into the Ca2+-binding Site, Biochem. J., 2001, vol. 367, pp. 473–480.

    Article  Google Scholar 

  27. Takeshita, H., Yasuda, T., Nakaima, T., Mogi, K., Kaneko, Y., Iida, R., and Kishi, K., A Single Amino Acid Substitution of Leu130Ile in Snake DNases I Contributes to the Acquisition of Thermal Stability: a Clue to the Molecular Evolutionary Mechanism from Cold-blooded to Warm-blooded Vertebrate, Eur. J. Biochem., 2003, vol. 270, pp. 307–314.

    Article  CAS  PubMed  Google Scholar 

  28. Vogel, S., Life in moving fluids, Princeton, Princeton University Press, 1994.

    Google Scholar 

  29. Yasuda, T., Takeshita, H., Iida, R., Ueki, M., Nakaima, T., Kaneko, Y., Mogi, K., and Kishi, K., A Single Amino Acid Substitution Can Shift the Optimum pH of DNase I for Enzyme Activity: Biochemical and Molecular Analysis of the Piscine DNase I Family, Biochem. Biophys. Acta, 2004, vol. 1672, pp. 174–183.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fafanđel.

Additional information

Published in Russian in Biologiya Morya.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fafanđel, M., Ravlić, S., Smodlaka, M. et al. Deoxyribonucleases (DNases) in the cortex and endosome from the marine sponge Tethya aurantium . Russ J Mar Biol 36, 383–389 (2010). https://doi.org/10.1134/S1063074010050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074010050081

Keywords

Navigation