Skip to main content
Log in

Optical biopsy of breast cancer tissue

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

In this paper, we report results of Fluorescence Emission Spectra (FES) and Stokes Shift Spectra (SSS) of 19 cancer tissue of invasive ductal carcinoma of different grades in comparison with normal breast tissues (obtained away from tumor regions). We were able to get distinct differences in the spectral features of normal and malignant tissues in terms of the ratios of concentrations of biomolecules like tryptophan, collagen and NADH. The sensitivity and specificity were in the range of 75%. What was all the more important was the parallelism in the spectral features of normal and malignant breast tissue pieces of above set of subjects. The objective of our research is to evolve one such protocol and the first step is the spectral characterization of in vitro optical analyses of excised tumor tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Boyle and B. Levin, World Cancer Report International Agency for Research on Cancer Nonserial Publication, 2008.

  2. P. L. Hsiung, D. R. Phatak, Y. Chen, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, Radio 244, 865 (2007).

    Article  Google Scholar 

  3. Y. Verma, M. Gautam, K. Divakar Rao, M. K. Swami, and P. K. Gupta, Laser Phys. DOI: 10.1134/S1054660X11210225.

  4. M. Bonesi, S. G. Proskurin, and I. V. Meglinski, Laser Phys. 20, 891 (2010).

    Article  ADS  Google Scholar 

  5. M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, Laser Phys. Lett. 8, 629 (2011).

    Article  Google Scholar 

  6. R. R. Allison, C. Sibata, G. H. Downie, and R. E. Cuenca, Photodiag. and Photodyna. Ther. 3, 139 (2006).

    Article  Google Scholar 

  7. P. K. Gupta, S. K. Majumdar, and A. Uppal, Lasers Surg. Med. 21, 417 (1997).

    Article  Google Scholar 

  8. A. Mahadevan-Jansen and R. R. Kortum, J. Biomed. Opt. 1, 31 (1996).

    Article  ADS  Google Scholar 

  9. G. A. Wagnieres, W. M. Star, and B. C. Wilson, Photochem. Photobiol. 68, 603 (1998).

    Google Scholar 

  10. M. Anidjar, O. Cussenot, J. Blais, O. Bourdon, S. Avrillier, D. Ettori, J. M. Villter, J. Fiet, P. Teillac, and A. Le Duc, J. Urology 155, 1771 (1996).

    Article  Google Scholar 

  11. M. Lapeg, J. Petera, and M. Jirsa, Journal of Photochem. Photobiol. B: Bio. 36, 205 (1996).

    Article  Google Scholar 

  12. R. R. Alfano, A. Pradhan, and G. C. Tang, J. Opt. Soc. Am. B 6, 1015 (1989).

    Article  ADS  Google Scholar 

  13. V. Masilamani, D. Rabah, M. AlSalhi, V. M. Trinka, and P. Vijaya, Raghavan, Photochem. Photobiol. 87, 208 (2011).

    Article  Google Scholar 

  14. N. Ramanujam, M. F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, and R. Richards-Kortum, Photochem. Photobiol. 64, 720 5 (1996).

    Article  Google Scholar 

  15. H. Q. Zhong, Z. Y. Guo, H. J. Wei, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 315 (2010).

    Article  ADS  Google Scholar 

  16. A. G. Orlova, I. V. Turchin, V. I. Plehanov, N. M. Shakhova, I. I. Fiks, M. I. Kleshnin, N. Yu. Konuchenko, and V. A. Kamensky, Laser Phys. Lett. 5, 321 (2008).

    Article  ADS  Google Scholar 

  17. N. Vogler, A. Medyukhina, I. Latka, S. Kemper, M. Böhm, B. Dietzek, and J. Popp, Laser Phys. Lett. 8, 617 (2011).

    Article  ADS  Google Scholar 

  18. K. König, H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann, Laser Phys. Lett. 8, 465 (2011).

    Article  Google Scholar 

  19. O. Lademann, A. Kramer, H. Richter, A. Patzelt, M. C. Meinke, J. Roewert-Huber, V. Czaika, K.-D. Weltmann, B. Hartmann, and S. Koch, Laser Phys. Lett. 8, 313 (2011).

    Article  Google Scholar 

  20. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 7 (2011).

    Google Scholar 

  21. A. Doronin, I. Fine, and I. Meglinski, Laser Phys. 21, 1972 (2011).

    Article  ADS  Google Scholar 

  22. S. Y. Xiong, J. G. Yang, and J. Zhuang, Laser Phys. 21, 1844 (2011).

    Article  ADS  Google Scholar 

  23. A. V. Ivanov, V. D. Rumyantseva, K. S. Shchamkhalov, and I. P. Shilov, Laser Phys. 20, 2056 (2010).

    Article  ADS  Google Scholar 

  24. W. Z. Xiang, A. E. Xu, J. Xu, Z. G. Bi, Y. B. Shang, and Q. S. Ren, Laser Phys. 20, 1767 (2010).

    Article  ADS  Google Scholar 

  25. S. Ganesan, P. G. Sacks, Y. Yang, A. Katz, M. Al-Rawi, H. E. Savage, S. P. Schantz, and R. R. Alfano, Cancer Biochem. Biophys. 16, 365 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. AlSalhi.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlSalhi, M.S., Ben Amer, S., Farhat, K. et al. Optical biopsy of breast cancer tissue. Laser Phys. 22, 1358–1363 (2012). https://doi.org/10.1134/S1054660X12080014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12080014

Keywords

Navigation